Radiation impact of swift heavy ion beams on double-interface CoFeB/MgO magnetic tunnel junctions
A double-interface CoFeB/MgO magnetic tunnel junction (MTJ) has a high thermal stability barrier (E) and high-efficiency magnetization switching with the scaling of device dimensions. However, compared to a single-interface CoFeB/MgO MTJ, its more complicated film stacks and interfaces are more vuln...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2020-04, Vol.116 (17) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A double-interface CoFeB/MgO magnetic tunnel junction (MTJ) has a high thermal stability barrier (E) and high-efficiency magnetization switching with the scaling of device dimensions. However, compared to a single-interface CoFeB/MgO MTJ, its more complicated film stacks and interfaces are more vulnerable to irradiation-induced swift heavy ions. We have studied the irradiation effects of Ta/Kr ions on double-interface CoFeB/MgO MTJs. Structural and physical analyses are performed through transmission electron microscopy, energy dispersive x-ray spectroscopy, and vibrating sample magnetometry. 1907 MeV Ta-ion irradiation damages the interfaces of the double-interface MTJ, resulting in the irreversible decrease in coercivity, while 2060 MeV Kr-ion irradiation damages the bulk properties of the MTJ, leading to the decrease in saturation magnetization. However, the electronic properties of the double-interface MTJ are almost immune to Kr-ion irradiation. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.5145124 |