TOF-SIMS Image Data Fusion by Multivariate Analysis and TOF-SIMS Spectrum Analysis by Sparse Modeling and Machine Learning
Time-of-Flight secondary ion mass spectrometry (TOF-SIMS) and scanning electron microscope (SEM) images were fused and then evaluated by means of principal component analysis. As a result, TOF-SIMS spatial resolution could be improved by adding SEM image information to TOF-SIMS data without drastic...
Gespeichert in:
Veröffentlicht in: | Journal of Surface Analysis 2018, Vol.25(2), pp.103-114 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Time-of-Flight secondary ion mass spectrometry (TOF-SIMS) and scanning electron microscope (SEM) images were fused and then evaluated by means of principal component analysis. As a result, TOF-SIMS spatial resolution could be improved by adding SEM image information to TOF-SIMS data without drastic change of TOF-SIMS spectrum information. Sparse modeling and machine learning were applied to TOF-SIMS data to interpret complex TOF-SIMS spectra. Least Absolute Shrinkage and Selection Operator (LASSO) provided a simplified TOF-SIMS spectrum with less noise. Machine learning using Random Forest and k-Nearest Neigbour appropriately predicted unknown test samples by learning TOF-SIMS data similar the test samples. |
---|---|
ISSN: | 1341-1756 1347-8400 |
DOI: | 10.1384/jsa.25.103 |