Energy Confinement in Self-Organized Tokamak Plasma (without Transport Barriers)
— The phenomenon of improved energy confinement during radiative cooling at the plasma edge was studied experimentally in the T-10 tokamak. It was shown that the effect is independent on the kind of radiating gas. No substantial differences were observed using Ne, which radiates at two-thirds of the...
Gespeichert in:
Veröffentlicht in: | Plasma physics reports 2020-04, Vol.46 (4), p.337-348 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | —
The phenomenon of improved energy confinement during radiative cooling at the plasma edge was studied experimentally in the T-10 tokamak. It was shown that the effect is independent on the kind of radiating gas. No substantial differences were observed using Ne, which radiates at two-thirds of the plasma radius, or He, which radiates at the very edge. This phenomenon is explained in frames of nonequilibrium thermodynamics. In a self-organized plasma, the energy balance is described by a Smoluchowski-type equation, where the plasma thermal conductivity and its functional dependence on the intensity of the heat flux, perturbing the pressure profile, is determined from experiment. |
---|---|
ISSN: | 1063-780X 1562-6938 |
DOI: | 10.1134/S1063780X20040091 |