Multi-walled carbon nano-tubes for performance enhancement of thin film heat flux sensors

Surface heat transfer measurement is an important aspect in many research problems. Thin film heat flux sensor (TFHFS) is mostly considered in such situations for heat flux measurement due to its quick response and high accuracy. In the present studies, multi-walled carbon nanotubes (MWCNTs) are mix...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat and mass transfer 2020-05, Vol.56 (5), p.1537-1549
Hauptverfasser: Jadhav, Akash, Peetala, Ravi, Kulkarni, Vinayak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface heat transfer measurement is an important aspect in many research problems. Thin film heat flux sensor (TFHFS) is mostly considered in such situations for heat flux measurement due to its quick response and high accuracy. In the present studies, multi-walled carbon nanotubes (MWCNTs) are mixed with platinum while making the TFHFSs. Such addition is noticed to increase the sensitivity and decrease the temperature coefficient of resistance (TCR) of the thin film sensors. Improved sensitivity by 151% and 119% for Macor and Quartz sensors has led to increase in strength of the temperature response of the sensors during dynamic calibration experiments. Though heat flux recovery is seen to have encouraging agreement for all the sensors, sensitivity enhancement is noticed to be more prominent and advantageous for Macor based sensors. Present studies recommend adequately finished substrate for better adhesion. Further, use of MWCNTs is advisable especially for low heat flux measurement and also for Macor substrate since either situation demands the higher sensitivity to increase the output response.
ISSN:0947-7411
1432-1181
DOI:10.1007/s00231-019-02765-0