Finite-time stability of uncertain fractional difference equations
Uncertain fractional difference equations may preferably describe the behavior of the systems with the memory effect and discrete feature in the uncertain environment. So it is of great significance to investigate their stability. In this paper, the concept of finite-time stability almost surely for...
Gespeichert in:
Veröffentlicht in: | Fuzzy optimization and decision making 2020-06, Vol.19 (2), p.239-249 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Uncertain fractional difference equations may preferably describe the behavior of the systems with the memory effect and discrete feature in the uncertain environment. So it is of great significance to investigate their stability. In this paper, the concept of finite-time stability almost surely for uncertain fractional difference equations is introduced. A finite-time stability theorem is then stated by Mittag–Leffler function and proved by a generalized Gronwall inequality on a finite time. Some examples are finally presented to illustrate the validity of our results. |
---|---|
ISSN: | 1568-4539 1573-2908 |
DOI: | 10.1007/s10700-020-09318-9 |