Green method for preparation of cellulose nanocrystals using deep eutectic solvent

An environment-friendly method for obtaining cellulose nanocrystals (CNC) using deep eutectic solvents (DES) was developed. Formation of highly crystalline CNC with average particle dimensions 20 × 100 × 700 nm was confirmed with SEM and AFM. Molecular dynamics simulations demonstrated that the hydr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2020-05, Vol.27 (8), p.4305-4317
Hauptverfasser: Smirnov, Michael A., Sokolova, Maria P., Tolmachev, Dmitry A., Vorobiov, Vitaly K., Kasatkin, Igor A., Smirnov, Nikolay N., Klaving, Anastasya V., Bobrova, Natalya V., Lukasheva, Natalia V., Yakimansky, Alexander V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An environment-friendly method for obtaining cellulose nanocrystals (CNC) using deep eutectic solvents (DES) was developed. Formation of highly crystalline CNC with average particle dimensions 20 × 100 × 700 nm was confirmed with SEM and AFM. Molecular dynamics simulations demonstrated that the hydrogen bond interactions of the cellulose hydroxyl groups with the urea C=O group and with the chloride ions were the key factors of the destruction of MCC particles in the process of solvation. The type of cellulose crystal structure (I β ) and the high degree of crystallinity (about 80% according to Segal method) were preserved during treatment with DES. The ability of the prepared CNC to act as a reinforcing filler was tested by introduction of them into the chitosan-based films plasticized with DES. It was found that addition of 2 wt% of CNC led to an increase in the strength of the films from 11.4 up to 20.4 MPa with a simultaneous increase in the elongation at break. Graphic abstract
ISSN:0969-0239
1572-882X
DOI:10.1007/s10570-020-03100-1