On a Generalization of Voronin’s Theorem

Voronin’s theorem states that the Riemann zeta-function ζ ( s ) is universal in the sense that all analytic functions that are defined and have no zeros on the right half of the critical strip can be approximated by the shifts ζ ( s + iτ ), τ ∈ ℝ. Some results on the approximation by the shifts ζ (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2020-03, Vol.107 (3-4), p.442-451
1. Verfasser: Laurinčikas, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Voronin’s theorem states that the Riemann zeta-function ζ ( s ) is universal in the sense that all analytic functions that are defined and have no zeros on the right half of the critical strip can be approximated by the shifts ζ ( s + iτ ), τ ∈ ℝ. Some results on the approximation by the shifts ζ ( s + iϕ ( τ )) with some function ϕ ( τ ) are also known. In this paper, it is established that an analytic function without zeros in the strip 1/2 + 1/(2 α ) < Res < 1 can be approximated by the shifts ζ ( s + i log α τ ) with α > 1.
ISSN:0001-4346
1067-9073
1573-8876
DOI:10.1134/S0001434620030086