On a Generalization of Voronin’s Theorem
Voronin’s theorem states that the Riemann zeta-function ζ ( s ) is universal in the sense that all analytic functions that are defined and have no zeros on the right half of the critical strip can be approximated by the shifts ζ ( s + iτ ), τ ∈ ℝ. Some results on the approximation by the shifts ζ (...
Gespeichert in:
Veröffentlicht in: | Mathematical Notes 2020-03, Vol.107 (3-4), p.442-451 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Voronin’s theorem states that the Riemann zeta-function
ζ
(
s
) is universal in the sense that all analytic functions that are defined and have no zeros on the right half of the critical strip can be approximated by the shifts
ζ
(
s + iτ
),
τ
∈ ℝ. Some results on the approximation by the shifts
ζ
(
s + iϕ
(
τ
)) with some function
ϕ
(
τ
) are also known. In this paper, it is established that an analytic function without zeros in the strip 1/2 + 1/(2
α
) < Res < 1 can be approximated by the shifts
ζ
(
s + i
log
α
τ
) with
α
> 1. |
---|---|
ISSN: | 0001-4346 1067-9073 1573-8876 |
DOI: | 10.1134/S0001434620030086 |