Linear and nonlinear relations between DSC parameters and elastic moduli for chemically and thermally treated human hair
Against the practical context of thermal straightening, hair samples were obtained with a chemical (bleaching) as well as a cumulative thermal history (0–800 s, 200 °C). On these samples, tensile testing and DSC analysis, both in the wet state, were conducted to obtain the elastic moduli E w as well...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2020-06, Vol.140 (5), p.2171-2178 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Against the practical context of thermal straightening, hair samples were obtained with a chemical (bleaching) as well as a cumulative thermal history (0–800 s, 200 °C). On these samples, tensile testing and DSC analysis, both in the wet state, were conducted to obtain the elastic moduli
E
w
as well as denaturation temperatures
T
D
and enthalpies Δ
H
D
. 3D plots show overall linearity for the relationships between the parameters for natural hair. For bleached hair, pronounced nonlinearities develop beyond 300 s of thermal treatment. At this stage,
T
D
as well as
E
w
approaches limiting values, consistent with the state of a highly cross-linked, thermoset polymer. 2D projections are used to investigate the correlations between pairs of parameters. The results show that bleaching imparts a specific sensitivity for thermal damage, namely, to the matrix proteins, which more readily than the intermediate filaments (IF) turn into a thermoset. Overall, correlations between parameters hold well prior to the thermoset range. It is thus suggested that tensile testing to determine the elastic modulus and DSC come to consistent and equivalent results, at least, for the current experimental context. However, while
E
w
combines contributions of IFs and matrix, DSC differentiates the specific property changes of these components. |
---|---|
ISSN: | 1388-6150 1588-2926 |
DOI: | 10.1007/s10973-019-08252-2 |