Several Extreme Coefficients of the Tutte Polynomial of Graphs
Let t i , j be the coefficient of x i y j in the Tutte polynomial T ( G ; x , y ) of a connected bridgeless and loopless graph G with order v and size e . It is trivial that t 0 , e - v + 1 = 1 and t v - 1 , 0 = 1 . In this paper, we obtain expressions for another six extreme coefficients t i , j...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2020-05, Vol.36 (3), p.445-457 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
t
i
,
j
be the coefficient of
x
i
y
j
in the Tutte polynomial
T
(
G
;
x
,
y
) of a connected bridgeless and loopless graph
G
with order
v
and size
e
. It is trivial that
t
0
,
e
-
v
+
1
=
1
and
t
v
-
1
,
0
=
1
. In this paper, we obtain expressions for another six extreme coefficients
t
i
,
j
’s with
(
i
,
j
)
=
(
0
,
e
-
v
)
,
(
0
,
e
-
v
-
1
)
,
(
v
-
2
,
0
)
,
(
v
-
3
,
0
)
,
(
1
,
e
-
v
)
and
(
v
-
2
,
1
)
in terms of small substructures of
G
. We also discuss their duality properties and their specializations to extreme coefficients of the Jones polynomial. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-019-02126-y |