A Combinatorial-Topological Shape Category for Polygraphs

We introduce constructible directed complexes, a combinatorial presentation of higher categories inspired by constructible complexes in poset topology. Constructible directed complexes with a greatest element, called atoms, encompass common classes of higher-categorical cell shapes, including globes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied categorical structures 2020-06, Vol.28 (3), p.419-476
1. Verfasser: Hadzihasanovic, Amar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 476
container_issue 3
container_start_page 419
container_title Applied categorical structures
container_volume 28
creator Hadzihasanovic, Amar
description We introduce constructible directed complexes, a combinatorial presentation of higher categories inspired by constructible complexes in poset topology. Constructible directed complexes with a greatest element, called atoms, encompass common classes of higher-categorical cell shapes, including globes, cubes, oriented simplices, and a large sub-class of opetopes, and are closed under lax Gray products and joins. We define constructible polygraphs to be presheaves on a category of atoms and inclusions, and extend the monoidal structures. We show that constructible directed complexes are a well-behaved subclass of Steiner’s directed complexes, which we use to define a realisation functor from constructible polygraphs to ω -categories. We prove that the realisation of a constructible polygraph is a polygraph in restricted cases, and in all cases conditionally to a conjecture. Finally, we define the geometric realisation of a constructible polygraph, and prove that it is a CW complex with one cell for each of its elements.
doi_str_mv 10.1007/s10485-019-09586-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2393122274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393122274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-6b889bdd659284853610429936a8b9812756bd2b42c32f685142a472addc2483</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoWEf_gKuC62hy06S5y6H4ggEFZx_S53ToNDXpLObfG63gztXlwDnnHj5Cbjm754zlD4GzTEvKOFKGUiuqzkjCZQ4Uoz4nCUPIKWgJl-QqhD1jDBWyhOA6Ldyh7Ec7O9_bgW7d5AbX9ZUd0o-dnZq0sHPTOX9KW-fTdzecOm-nXbgmF60dQnPze1dk-_S4LV7o5u35tVhvaCW0nKkqtcayrpVE0HGjUHEqIApldYmaQy5VWUOZQSWgVVryDGyWg63rCjItVuRuqZ28-zw2YTZ7d_Rj_GhAoOAAkGfRBYur8i4E37Rm8v3B-pPhzHwTMgshEwmZH0JGxZBYQiGax67xf9X_pL4A_qtm5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393122274</pqid></control><display><type>article</type><title>A Combinatorial-Topological Shape Category for Polygraphs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hadzihasanovic, Amar</creator><creatorcontrib>Hadzihasanovic, Amar</creatorcontrib><description>We introduce constructible directed complexes, a combinatorial presentation of higher categories inspired by constructible complexes in poset topology. Constructible directed complexes with a greatest element, called atoms, encompass common classes of higher-categorical cell shapes, including globes, cubes, oriented simplices, and a large sub-class of opetopes, and are closed under lax Gray products and joins. We define constructible polygraphs to be presheaves on a category of atoms and inclusions, and extend the monoidal structures. We show that constructible directed complexes are a well-behaved subclass of Steiner’s directed complexes, which we use to define a realisation functor from constructible polygraphs to ω -categories. We prove that the realisation of a constructible polygraph is a polygraph in restricted cases, and in all cases conditionally to a conjecture. Finally, we define the geometric realisation of a constructible polygraph, and prove that it is a CW complex with one cell for each of its elements.</description><identifier>ISSN: 0927-2852</identifier><identifier>EISSN: 1572-9095</identifier><identifier>DOI: 10.1007/s10485-019-09586-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Combinatorial analysis ; Convex and Discrete Geometry ; Cubes ; Geometry ; Inclusions ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Polygraphs ; Theory of Computation ; Topology</subject><ispartof>Applied categorical structures, 2020-06, Vol.28 (3), p.419-476</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-6b889bdd659284853610429936a8b9812756bd2b42c32f685142a472addc2483</citedby><cites>FETCH-LOGICAL-c385t-6b889bdd659284853610429936a8b9812756bd2b42c32f685142a472addc2483</cites><orcidid>0000-0001-9481-191X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10485-019-09586-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10485-019-09586-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hadzihasanovic, Amar</creatorcontrib><title>A Combinatorial-Topological Shape Category for Polygraphs</title><title>Applied categorical structures</title><addtitle>Appl Categor Struct</addtitle><description>We introduce constructible directed complexes, a combinatorial presentation of higher categories inspired by constructible complexes in poset topology. Constructible directed complexes with a greatest element, called atoms, encompass common classes of higher-categorical cell shapes, including globes, cubes, oriented simplices, and a large sub-class of opetopes, and are closed under lax Gray products and joins. We define constructible polygraphs to be presheaves on a category of atoms and inclusions, and extend the monoidal structures. We show that constructible directed complexes are a well-behaved subclass of Steiner’s directed complexes, which we use to define a realisation functor from constructible polygraphs to ω -categories. We prove that the realisation of a constructible polygraph is a polygraph in restricted cases, and in all cases conditionally to a conjecture. Finally, we define the geometric realisation of a constructible polygraph, and prove that it is a CW complex with one cell for each of its elements.</description><subject>Combinatorial analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Cubes</subject><subject>Geometry</subject><subject>Inclusions</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polygraphs</subject><subject>Theory of Computation</subject><subject>Topology</subject><issn>0927-2852</issn><issn>1572-9095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoWEf_gKuC62hy06S5y6H4ggEFZx_S53ToNDXpLObfG63gztXlwDnnHj5Cbjm754zlD4GzTEvKOFKGUiuqzkjCZQ4Uoz4nCUPIKWgJl-QqhD1jDBWyhOA6Ldyh7Ec7O9_bgW7d5AbX9ZUd0o-dnZq0sHPTOX9KW-fTdzecOm-nXbgmF60dQnPze1dk-_S4LV7o5u35tVhvaCW0nKkqtcayrpVE0HGjUHEqIApldYmaQy5VWUOZQSWgVVryDGyWg63rCjItVuRuqZ28-zw2YTZ7d_Rj_GhAoOAAkGfRBYur8i4E37Rm8v3B-pPhzHwTMgshEwmZH0JGxZBYQiGax67xf9X_pL4A_qtm5A</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Hadzihasanovic, Amar</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9481-191X</orcidid></search><sort><creationdate>20200601</creationdate><title>A Combinatorial-Topological Shape Category for Polygraphs</title><author>Hadzihasanovic, Amar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-6b889bdd659284853610429936a8b9812756bd2b42c32f685142a472addc2483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorial analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Cubes</topic><topic>Geometry</topic><topic>Inclusions</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polygraphs</topic><topic>Theory of Computation</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadzihasanovic, Amar</creatorcontrib><collection>CrossRef</collection><jtitle>Applied categorical structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadzihasanovic, Amar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Combinatorial-Topological Shape Category for Polygraphs</atitle><jtitle>Applied categorical structures</jtitle><stitle>Appl Categor Struct</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>28</volume><issue>3</issue><spage>419</spage><epage>476</epage><pages>419-476</pages><issn>0927-2852</issn><eissn>1572-9095</eissn><abstract>We introduce constructible directed complexes, a combinatorial presentation of higher categories inspired by constructible complexes in poset topology. Constructible directed complexes with a greatest element, called atoms, encompass common classes of higher-categorical cell shapes, including globes, cubes, oriented simplices, and a large sub-class of opetopes, and are closed under lax Gray products and joins. We define constructible polygraphs to be presheaves on a category of atoms and inclusions, and extend the monoidal structures. We show that constructible directed complexes are a well-behaved subclass of Steiner’s directed complexes, which we use to define a realisation functor from constructible polygraphs to ω -categories. We prove that the realisation of a constructible polygraph is a polygraph in restricted cases, and in all cases conditionally to a conjecture. Finally, we define the geometric realisation of a constructible polygraph, and prove that it is a CW complex with one cell for each of its elements.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10485-019-09586-6</doi><tpages>58</tpages><orcidid>https://orcid.org/0000-0001-9481-191X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-2852
ispartof Applied categorical structures, 2020-06, Vol.28 (3), p.419-476
issn 0927-2852
1572-9095
language eng
recordid cdi_proquest_journals_2393122274
source SpringerLink Journals - AutoHoldings
subjects Combinatorial analysis
Convex and Discrete Geometry
Cubes
Geometry
Inclusions
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Polygraphs
Theory of Computation
Topology
title A Combinatorial-Topological Shape Category for Polygraphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Combinatorial-Topological%20Shape%20Category%20for%20Polygraphs&rft.jtitle=Applied%20categorical%20structures&rft.au=Hadzihasanovic,%20Amar&rft.date=2020-06-01&rft.volume=28&rft.issue=3&rft.spage=419&rft.epage=476&rft.pages=419-476&rft.issn=0927-2852&rft.eissn=1572-9095&rft_id=info:doi/10.1007/s10485-019-09586-6&rft_dat=%3Cproquest_cross%3E2393122274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393122274&rft_id=info:pmid/&rfr_iscdi=true