A Combinatorial-Topological Shape Category for Polygraphs

We introduce constructible directed complexes, a combinatorial presentation of higher categories inspired by constructible complexes in poset topology. Constructible directed complexes with a greatest element, called atoms, encompass common classes of higher-categorical cell shapes, including globes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied categorical structures 2020-06, Vol.28 (3), p.419-476
1. Verfasser: Hadzihasanovic, Amar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce constructible directed complexes, a combinatorial presentation of higher categories inspired by constructible complexes in poset topology. Constructible directed complexes with a greatest element, called atoms, encompass common classes of higher-categorical cell shapes, including globes, cubes, oriented simplices, and a large sub-class of opetopes, and are closed under lax Gray products and joins. We define constructible polygraphs to be presheaves on a category of atoms and inclusions, and extend the monoidal structures. We show that constructible directed complexes are a well-behaved subclass of Steiner’s directed complexes, which we use to define a realisation functor from constructible polygraphs to ω -categories. We prove that the realisation of a constructible polygraph is a polygraph in restricted cases, and in all cases conditionally to a conjecture. Finally, we define the geometric realisation of a constructible polygraph, and prove that it is a CW complex with one cell for each of its elements.
ISSN:0927-2852
1572-9095
DOI:10.1007/s10485-019-09586-6