Edge Metric Dimension of Some Graph Operations

Let G = ( V , E ) be a connected graph. Given a vertex v ∈ V and an edge e = u w ∈ E , the distance between v and e is defined as d G ( e , v ) = min { d G ( u , v ) , d G ( w , v ) } . A nonempty set S ⊂ V is an edge metric generator for G if for any two edges e 1 , e 2 ∈ E there is a vertex w ∈ S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2020-05, Vol.43 (3), p.2465-2477
Hauptverfasser: Peterin, Iztok, Yero, Ismael G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G = ( V , E ) be a connected graph. Given a vertex v ∈ V and an edge e = u w ∈ E , the distance between v and e is defined as d G ( e , v ) = min { d G ( u , v ) , d G ( w , v ) } . A nonempty set S ⊂ V is an edge metric generator for G if for any two edges e 1 , e 2 ∈ E there is a vertex w ∈ S such that d G ( w , e 1 ) ≠ d G ( w , e 2 ) . The minimum cardinality of any edge metric generator for a graph G is the edge metric dimension of G . The edge metric dimension of the join, lexicographic, and corona product of graphs is studied in this article.
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-019-00816-7