Edge Metric Dimension of Some Graph Operations
Let G = ( V , E ) be a connected graph. Given a vertex v ∈ V and an edge e = u w ∈ E , the distance between v and e is defined as d G ( e , v ) = min { d G ( u , v ) , d G ( w , v ) } . A nonempty set S ⊂ V is an edge metric generator for G if for any two edges e 1 , e 2 ∈ E there is a vertex w ∈ S...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2020-05, Vol.43 (3), p.2465-2477 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
=
(
V
,
E
)
be a connected graph. Given a vertex
v
∈
V
and an edge
e
=
u
w
∈
E
, the distance between
v
and
e
is defined as
d
G
(
e
,
v
)
=
min
{
d
G
(
u
,
v
)
,
d
G
(
w
,
v
)
}
. A nonempty set
S
⊂
V
is an edge metric generator for
G
if for any two edges
e
1
,
e
2
∈
E
there is a vertex
w
∈
S
such that
d
G
(
w
,
e
1
)
≠
d
G
(
w
,
e
2
)
. The minimum cardinality of any edge metric generator for a graph
G
is the edge metric dimension of
G
. The edge metric dimension of the join, lexicographic, and corona product of graphs is studied in this article. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-019-00816-7 |