Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera

Memristor synapse can be used to characterize the electromagnetic induction effect between two neurons that induces an action current by their membrane potential difference. This paper proposes a memristor synapse-coupled neuron network with no equilibrium, which is achieved using a memristor synaps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2020-03, Vol.100 (1), p.937-950
Hauptverfasser: Bao, Han, Zhang, Yunzhen, Liu, Wenbo, Bao, Bocheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Memristor synapse can be used to characterize the electromagnetic induction effect between two neurons that induces an action current by their membrane potential difference. This paper proposes a memristor synapse-coupled neuron network with no equilibrium, which is achieved using a memristor synapse to connect the membrane potentials of two identical three-dimensional memristive Hindmarsh–Rose neurons. Exponential synchronization is proved theoretically, and synchronous activities are discussed numerically. The theoretical and numerical results illustrate that the synchronicities of memristor synapse-coupled neuron network are related to the memristor coupling coefficient and especially related to the initial states of memristor synapse and coupling neurons. Furthermore, by constructing a ring network of memristor synapse-coupled neuron network, several types of collective behaviors including incoherent, coherent, imperfect synchronization, and chimera states are disclosed numerically, which indicate that the chimera states arisen in the ring network are dependent on the memristor coupling coefficient and sub-network coupling strength.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-020-05529-2