Fast GPU 3D Diffeomorphic Image Registration

3D image registration is one of the most fundamental and computationally expensive operations in medical image analysis. Here, we present a mixed-precision, Gauss--Newton--Krylov solver for diffeomorphic registration of two images. Our work extends the publicly available CLAIRE library to GPU archit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-04
Hauptverfasser: Brunn, Malte, Himthani, Naveen, Biros, George, Mehl, Miriam, Mang, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:3D image registration is one of the most fundamental and computationally expensive operations in medical image analysis. Here, we present a mixed-precision, Gauss--Newton--Krylov solver for diffeomorphic registration of two images. Our work extends the publicly available CLAIRE library to GPU architectures. Despite the importance of image registration, only a few implementations of large deformation diffeomorphic registration packages support GPUs. Our contributions are new algorithms to significantly reduce the run time of the two main computational kernels in CLAIRE: calculation of derivatives and scattered-data interpolation. We deploy (i) highly-optimized, mixed-precision GPU-kernels for the evaluation of scattered-data interpolation, (ii) replace Fast-Fourier-Transform (FFT)-based first-order derivatives with optimized 8th-order finite differences, and (iii) compare with state-of-the-art CPU and GPU implementations. As a highlight, we demonstrate that we can register \(256^3\) clinical images in less than 6 seconds on a single NVIDIA Tesla V100. This amounts to over 20\(\times\) speed-up over the current version of CLAIRE and over 30\(\times\) speed-up over existing GPU implementations.
ISSN:2331-8422