Trends in Upper-Tropospheric Humidity: Expansion of the Subtropical Dry Zones?

Subtropical dry zones, located in the Hadley cells’ subsidence regions, strongly influence regional climate as well as outgoing longwave radiation. Changes in these dry zones could have significant impact on surface climate as well as on the atmospheric energy budget. This study investigates the beh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2020-03, Vol.33 (6), p.2149-2161
Hauptverfasser: Tivig, Miriam, Grützun, Verena, John, Viju O., Buehler, Stefan A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Subtropical dry zones, located in the Hadley cells’ subsidence regions, strongly influence regional climate as well as outgoing longwave radiation. Changes in these dry zones could have significant impact on surface climate as well as on the atmospheric energy budget. This study investigates the behavior of upper-tropospheric dry zones in a changing climate, using the variable upper-tropospheric humidity (UTH), calculated from climate model experiment output as well as from radiances measured with satellite-based sensors. The global UTH distribution shows that dry zones form a belt in the subtropical winter hemisphere. In the summer hemisphere they concentrate over the eastern ocean basins, where the descent regions of the subtropical anticyclones are located. Recent studies with model and satellite data have found tendencies of increasing dryness at the poleward edges of the subtropical subsidence zones. However, UTH calculated from climate simulations with 25 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) shows these tendencies only for parts of the winter-hemispheric dry belts. In the summer hemisphere, even though differences exist between the simulations, UTH is increasing in most dry zones, particularly in the South and North Pacific Ocean. None of the summer dry zones is expanding in these simulations.Upper-tropospheric dry zones estimated from observational data do not show any robust signs of change since 1979. Apart from a weak drying tendency at the poleward edge of the southern winter-hemispheric dry belt in infrared measurements, nothing indicates that the subtropical dry belts have expanded poleward.
ISSN:0894-8755
1520-0442
DOI:10.1175/JCLI-D-19-0046.1