Image Processing of Radar Mosaics for the Climatology of Convection Initiation in South China
A dataset of convection initiation (CI) is of great value in studying the triggering mechanisms of deep moist convection and evaluating the performances of numerical models. In recent years, the data quality of the operationally generated radar mosaics over China has been greatly improved, which pro...
Gespeichert in:
Veröffentlicht in: | Journal of applied meteorology and climatology 2020-01, Vol.59 (1), p.65-81 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A dataset of convection initiation (CI) is of great value in studying the triggering mechanisms of deep moist convection and evaluating the performances of numerical models. In recent years, the data quality of the operationally generated radar mosaics over China has been greatly improved, which provides an opportunity to retrieve a CI dataset from that region. In this work, an attempt is made to reveal the potential of applying a simple framework of objective CI detection for the study of CI climatology in China. The framework was tested using radar mosaic maps in South China that were accessible online. The identified CI events were validated in both direct and indirect ways. On the basis of a direct manual check, nearly all of the identified CI cells had an organized motion. The precipitation echoes of the cells had a median duration of approximately 2.5 h. The CI occurrences were further compared with rainfall estimates to ensure physical consistency. The diurnal cycle of CI occurrence exhibits three major modes: a late-night-to-morning peak at the windward coasts and offshore, a noon-to-late-afternoon peak on the coastal land, and an evening-to-early-morning peak over the northwestern highland. These spatial modes agree well with those of rainfall, indirectly suggesting the reliability of the CI statistics. By processing radar mosaic maps, such a framework could be applied for studying CI climatology over China and other regions. |
---|---|
ISSN: | 1558-8424 1558-8432 |
DOI: | 10.1175/JAMC-D-19-0081.1 |