Role of Capping Material and GaN Polarity on Mg Ion Implantation Activation
Ion implantation of magnesium for p‐type GaN presents many opportunities; however, activation has proven difficult due to the decomposition of GaN at relevant annealing temperatures. Herein, testing the efficacy of multiple in situ and ex situ caps based on aluminum nitride and silicon nitride for G...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2020-04, Vol.217 (7), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 217 |
creator | Jacobs, Alan G. Feigelson, Boris N. Hite, Jennifer K. Gorsak, Cameron A. Luna, Lunet E. Anderson, Travis J. Kub, Francis J. |
description | Ion implantation of magnesium for p‐type GaN presents many opportunities; however, activation has proven difficult due to the decomposition of GaN at relevant annealing temperatures. Herein, testing the efficacy of multiple in situ and ex situ caps based on aluminum nitride and silicon nitride for GaN protection during annealing is presented. Photoluminescence shows better activation for in situ metal organic chemical vapor deposition (MOCVD)‐grown aluminum nitride caps compared with ex situ sputtered aluminum nitride and the best performance by ex situ plasma‐enhanced chemical vapor deposition (PECVD) silicon nitride. Furthermore, only samples annealed at the highest temperatures tested show preferential growth of UV luminescence to yellow‐green luminescence reinforcing the need for better capping solutions and higher temperature annealing.
Herein, direct comparison of in situ and ex situ caps including aluminum and silicon nitrides for stabilization of GaN during implanted dopant activation is described. Caps seen here evaluate on macroscopic integrity after annealing, whereas dopant activation and structural quality are also determined. |
doi_str_mv | 10.1002/pssa.201900789 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2391783325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391783325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3839-9568c1d8847dc0f672416d20c2700811330ed83f32ae16ee0ed9381010cf6cab3</originalsourceid><addsrcrecordid>eNqFkEFPAjEUhBujiYhePTfxvPheu3TbIyGKRFAiem5qt0uWLNu1XTT8excxePQ0M8k37yVDyDXCAAHYbROjGTBABZBJdUJ6KAVLBEd1evQA5-QixjVAOkwz7JHHF1856gs6Nk1T1is6N60LpamoqXM6MU904SsTynZHfU3nKzrtZLppKlO3pi27MLJt-fljL8lZYarorn61T97u717HD8nseTIdj2aJ5ZKrRA2FtJhLmWa5hUJkLEWRM7AsA5CInIPLJS84Mw6Fc11SXCIg2EJY88775OZwtwn-Y-tiq9d-G-rupWZcYSY5Z8OOGhwoG3yMwRW6CeXGhJ1G0PvB9H4wfRysK6hD4aus3O4fWi-Wy9Ff9xsgp224</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391783325</pqid></control><display><type>article</type><title>Role of Capping Material and GaN Polarity on Mg Ion Implantation Activation</title><source>Access via Wiley Online Library</source><creator>Jacobs, Alan G. ; Feigelson, Boris N. ; Hite, Jennifer K. ; Gorsak, Cameron A. ; Luna, Lunet E. ; Anderson, Travis J. ; Kub, Francis J.</creator><creatorcontrib>Jacobs, Alan G. ; Feigelson, Boris N. ; Hite, Jennifer K. ; Gorsak, Cameron A. ; Luna, Lunet E. ; Anderson, Travis J. ; Kub, Francis J.</creatorcontrib><description>Ion implantation of magnesium for p‐type GaN presents many opportunities; however, activation has proven difficult due to the decomposition of GaN at relevant annealing temperatures. Herein, testing the efficacy of multiple in situ and ex situ caps based on aluminum nitride and silicon nitride for GaN protection during annealing is presented. Photoluminescence shows better activation for in situ metal organic chemical vapor deposition (MOCVD)‐grown aluminum nitride caps compared with ex situ sputtered aluminum nitride and the best performance by ex situ plasma‐enhanced chemical vapor deposition (PECVD) silicon nitride. Furthermore, only samples annealed at the highest temperatures tested show preferential growth of UV luminescence to yellow‐green luminescence reinforcing the need for better capping solutions and higher temperature annealing.
Herein, direct comparison of in situ and ex situ caps including aluminum and silicon nitrides for stabilization of GaN during implanted dopant activation is described. Caps seen here evaluate on macroscopic integrity after annealing, whereas dopant activation and structural quality are also determined.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201900789</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Activation ; Aluminum ; Aluminum nitride ; Annealing ; Capping ; Chemical vapor deposition ; dopant activation SMRTA ; Gallium nitrides ; Ion implantation ; Luminescence ; Magnesium ; Metalorganic chemical vapor deposition ; Organic chemicals ; Organic chemistry ; Photoluminescence ; Polarity ; protective caps ; Silicon nitride</subject><ispartof>Physica status solidi. A, Applications and materials science, 2020-04, Vol.217 (7), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3839-9568c1d8847dc0f672416d20c2700811330ed83f32ae16ee0ed9381010cf6cab3</citedby><cites>FETCH-LOGICAL-c3839-9568c1d8847dc0f672416d20c2700811330ed83f32ae16ee0ed9381010cf6cab3</cites><orcidid>0000-0003-3542-2361 ; 0000-0003-1250-5885 ; 0000-0002-4090-0826 ; 0000-0002-8350-759X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201900789$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201900789$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jacobs, Alan G.</creatorcontrib><creatorcontrib>Feigelson, Boris N.</creatorcontrib><creatorcontrib>Hite, Jennifer K.</creatorcontrib><creatorcontrib>Gorsak, Cameron A.</creatorcontrib><creatorcontrib>Luna, Lunet E.</creatorcontrib><creatorcontrib>Anderson, Travis J.</creatorcontrib><creatorcontrib>Kub, Francis J.</creatorcontrib><title>Role of Capping Material and GaN Polarity on Mg Ion Implantation Activation</title><title>Physica status solidi. A, Applications and materials science</title><description>Ion implantation of magnesium for p‐type GaN presents many opportunities; however, activation has proven difficult due to the decomposition of GaN at relevant annealing temperatures. Herein, testing the efficacy of multiple in situ and ex situ caps based on aluminum nitride and silicon nitride for GaN protection during annealing is presented. Photoluminescence shows better activation for in situ metal organic chemical vapor deposition (MOCVD)‐grown aluminum nitride caps compared with ex situ sputtered aluminum nitride and the best performance by ex situ plasma‐enhanced chemical vapor deposition (PECVD) silicon nitride. Furthermore, only samples annealed at the highest temperatures tested show preferential growth of UV luminescence to yellow‐green luminescence reinforcing the need for better capping solutions and higher temperature annealing.
Herein, direct comparison of in situ and ex situ caps including aluminum and silicon nitrides for stabilization of GaN during implanted dopant activation is described. Caps seen here evaluate on macroscopic integrity after annealing, whereas dopant activation and structural quality are also determined.</description><subject>Activation</subject><subject>Aluminum</subject><subject>Aluminum nitride</subject><subject>Annealing</subject><subject>Capping</subject><subject>Chemical vapor deposition</subject><subject>dopant activation SMRTA</subject><subject>Gallium nitrides</subject><subject>Ion implantation</subject><subject>Luminescence</subject><subject>Magnesium</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Photoluminescence</subject><subject>Polarity</subject><subject>protective caps</subject><subject>Silicon nitride</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPAjEUhBujiYhePTfxvPheu3TbIyGKRFAiem5qt0uWLNu1XTT8excxePQ0M8k37yVDyDXCAAHYbROjGTBABZBJdUJ6KAVLBEd1evQA5-QixjVAOkwz7JHHF1856gs6Nk1T1is6N60LpamoqXM6MU904SsTynZHfU3nKzrtZLppKlO3pi27MLJt-fljL8lZYarorn61T97u717HD8nseTIdj2aJ5ZKrRA2FtJhLmWa5hUJkLEWRM7AsA5CInIPLJS84Mw6Fc11SXCIg2EJY88775OZwtwn-Y-tiq9d-G-rupWZcYSY5Z8OOGhwoG3yMwRW6CeXGhJ1G0PvB9H4wfRysK6hD4aus3O4fWi-Wy9Ff9xsgp224</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Jacobs, Alan G.</creator><creator>Feigelson, Boris N.</creator><creator>Hite, Jennifer K.</creator><creator>Gorsak, Cameron A.</creator><creator>Luna, Lunet E.</creator><creator>Anderson, Travis J.</creator><creator>Kub, Francis J.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3542-2361</orcidid><orcidid>https://orcid.org/0000-0003-1250-5885</orcidid><orcidid>https://orcid.org/0000-0002-4090-0826</orcidid><orcidid>https://orcid.org/0000-0002-8350-759X</orcidid></search><sort><creationdate>202004</creationdate><title>Role of Capping Material and GaN Polarity on Mg Ion Implantation Activation</title><author>Jacobs, Alan G. ; Feigelson, Boris N. ; Hite, Jennifer K. ; Gorsak, Cameron A. ; Luna, Lunet E. ; Anderson, Travis J. ; Kub, Francis J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3839-9568c1d8847dc0f672416d20c2700811330ed83f32ae16ee0ed9381010cf6cab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation</topic><topic>Aluminum</topic><topic>Aluminum nitride</topic><topic>Annealing</topic><topic>Capping</topic><topic>Chemical vapor deposition</topic><topic>dopant activation SMRTA</topic><topic>Gallium nitrides</topic><topic>Ion implantation</topic><topic>Luminescence</topic><topic>Magnesium</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Photoluminescence</topic><topic>Polarity</topic><topic>protective caps</topic><topic>Silicon nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacobs, Alan G.</creatorcontrib><creatorcontrib>Feigelson, Boris N.</creatorcontrib><creatorcontrib>Hite, Jennifer K.</creatorcontrib><creatorcontrib>Gorsak, Cameron A.</creatorcontrib><creatorcontrib>Luna, Lunet E.</creatorcontrib><creatorcontrib>Anderson, Travis J.</creatorcontrib><creatorcontrib>Kub, Francis J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacobs, Alan G.</au><au>Feigelson, Boris N.</au><au>Hite, Jennifer K.</au><au>Gorsak, Cameron A.</au><au>Luna, Lunet E.</au><au>Anderson, Travis J.</au><au>Kub, Francis J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Capping Material and GaN Polarity on Mg Ion Implantation Activation</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2020-04</date><risdate>2020</risdate><volume>217</volume><issue>7</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Ion implantation of magnesium for p‐type GaN presents many opportunities; however, activation has proven difficult due to the decomposition of GaN at relevant annealing temperatures. Herein, testing the efficacy of multiple in situ and ex situ caps based on aluminum nitride and silicon nitride for GaN protection during annealing is presented. Photoluminescence shows better activation for in situ metal organic chemical vapor deposition (MOCVD)‐grown aluminum nitride caps compared with ex situ sputtered aluminum nitride and the best performance by ex situ plasma‐enhanced chemical vapor deposition (PECVD) silicon nitride. Furthermore, only samples annealed at the highest temperatures tested show preferential growth of UV luminescence to yellow‐green luminescence reinforcing the need for better capping solutions and higher temperature annealing.
Herein, direct comparison of in situ and ex situ caps including aluminum and silicon nitrides for stabilization of GaN during implanted dopant activation is described. Caps seen here evaluate on macroscopic integrity after annealing, whereas dopant activation and structural quality are also determined.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201900789</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3542-2361</orcidid><orcidid>https://orcid.org/0000-0003-1250-5885</orcidid><orcidid>https://orcid.org/0000-0002-4090-0826</orcidid><orcidid>https://orcid.org/0000-0002-8350-759X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2020-04, Vol.217 (7), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_2391783325 |
source | Access via Wiley Online Library |
subjects | Activation Aluminum Aluminum nitride Annealing Capping Chemical vapor deposition dopant activation SMRTA Gallium nitrides Ion implantation Luminescence Magnesium Metalorganic chemical vapor deposition Organic chemicals Organic chemistry Photoluminescence Polarity protective caps Silicon nitride |
title | Role of Capping Material and GaN Polarity on Mg Ion Implantation Activation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A44%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Capping%20Material%20and%20GaN%20Polarity%20on%20Mg%20Ion%20Implantation%20Activation&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Jacobs,%20Alan%20G.&rft.date=2020-04&rft.volume=217&rft.issue=7&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201900789&rft_dat=%3Cproquest_cross%3E2391783325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391783325&rft_id=info:pmid/&rfr_iscdi=true |