Role of Capping Material and GaN Polarity on Mg Ion Implantation Activation

Ion implantation of magnesium for p‐type GaN presents many opportunities; however, activation has proven difficult due to the decomposition of GaN at relevant annealing temperatures. Herein, testing the efficacy of multiple in situ and ex situ caps based on aluminum nitride and silicon nitride for G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2020-04, Vol.217 (7), p.n/a
Hauptverfasser: Jacobs, Alan G., Feigelson, Boris N., Hite, Jennifer K., Gorsak, Cameron A., Luna, Lunet E., Anderson, Travis J., Kub, Francis J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 217
creator Jacobs, Alan G.
Feigelson, Boris N.
Hite, Jennifer K.
Gorsak, Cameron A.
Luna, Lunet E.
Anderson, Travis J.
Kub, Francis J.
description Ion implantation of magnesium for p‐type GaN presents many opportunities; however, activation has proven difficult due to the decomposition of GaN at relevant annealing temperatures. Herein, testing the efficacy of multiple in situ and ex situ caps based on aluminum nitride and silicon nitride for GaN protection during annealing is presented. Photoluminescence shows better activation for in situ metal organic chemical vapor deposition (MOCVD)‐grown aluminum nitride caps compared with ex situ sputtered aluminum nitride and the best performance by ex situ plasma‐enhanced chemical vapor deposition (PECVD) silicon nitride. Furthermore, only samples annealed at the highest temperatures tested show preferential growth of UV luminescence to yellow‐green luminescence reinforcing the need for better capping solutions and higher temperature annealing. Herein, direct comparison of in situ and ex situ caps including aluminum and silicon nitrides for stabilization of GaN during implanted dopant activation is described. Caps seen here evaluate on macroscopic integrity after annealing, whereas dopant activation and structural quality are also determined.
doi_str_mv 10.1002/pssa.201900789
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2391783325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391783325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3839-9568c1d8847dc0f672416d20c2700811330ed83f32ae16ee0ed9381010cf6cab3</originalsourceid><addsrcrecordid>eNqFkEFPAjEUhBujiYhePTfxvPheu3TbIyGKRFAiem5qt0uWLNu1XTT8excxePQ0M8k37yVDyDXCAAHYbROjGTBABZBJdUJ6KAVLBEd1evQA5-QixjVAOkwz7JHHF1856gs6Nk1T1is6N60LpamoqXM6MU904SsTynZHfU3nKzrtZLppKlO3pi27MLJt-fljL8lZYarorn61T97u717HD8nseTIdj2aJ5ZKrRA2FtJhLmWa5hUJkLEWRM7AsA5CInIPLJS84Mw6Fc11SXCIg2EJY88775OZwtwn-Y-tiq9d-G-rupWZcYSY5Z8OOGhwoG3yMwRW6CeXGhJ1G0PvB9H4wfRysK6hD4aus3O4fWi-Wy9Ff9xsgp224</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391783325</pqid></control><display><type>article</type><title>Role of Capping Material and GaN Polarity on Mg Ion Implantation Activation</title><source>Access via Wiley Online Library</source><creator>Jacobs, Alan G. ; Feigelson, Boris N. ; Hite, Jennifer K. ; Gorsak, Cameron A. ; Luna, Lunet E. ; Anderson, Travis J. ; Kub, Francis J.</creator><creatorcontrib>Jacobs, Alan G. ; Feigelson, Boris N. ; Hite, Jennifer K. ; Gorsak, Cameron A. ; Luna, Lunet E. ; Anderson, Travis J. ; Kub, Francis J.</creatorcontrib><description>Ion implantation of magnesium for p‐type GaN presents many opportunities; however, activation has proven difficult due to the decomposition of GaN at relevant annealing temperatures. Herein, testing the efficacy of multiple in situ and ex situ caps based on aluminum nitride and silicon nitride for GaN protection during annealing is presented. Photoluminescence shows better activation for in situ metal organic chemical vapor deposition (MOCVD)‐grown aluminum nitride caps compared with ex situ sputtered aluminum nitride and the best performance by ex situ plasma‐enhanced chemical vapor deposition (PECVD) silicon nitride. Furthermore, only samples annealed at the highest temperatures tested show preferential growth of UV luminescence to yellow‐green luminescence reinforcing the need for better capping solutions and higher temperature annealing. Herein, direct comparison of in situ and ex situ caps including aluminum and silicon nitrides for stabilization of GaN during implanted dopant activation is described. Caps seen here evaluate on macroscopic integrity after annealing, whereas dopant activation and structural quality are also determined.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201900789</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Activation ; Aluminum ; Aluminum nitride ; Annealing ; Capping ; Chemical vapor deposition ; dopant activation SMRTA ; Gallium nitrides ; Ion implantation ; Luminescence ; Magnesium ; Metalorganic chemical vapor deposition ; Organic chemicals ; Organic chemistry ; Photoluminescence ; Polarity ; protective caps ; Silicon nitride</subject><ispartof>Physica status solidi. A, Applications and materials science, 2020-04, Vol.217 (7), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3839-9568c1d8847dc0f672416d20c2700811330ed83f32ae16ee0ed9381010cf6cab3</citedby><cites>FETCH-LOGICAL-c3839-9568c1d8847dc0f672416d20c2700811330ed83f32ae16ee0ed9381010cf6cab3</cites><orcidid>0000-0003-3542-2361 ; 0000-0003-1250-5885 ; 0000-0002-4090-0826 ; 0000-0002-8350-759X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201900789$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201900789$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jacobs, Alan G.</creatorcontrib><creatorcontrib>Feigelson, Boris N.</creatorcontrib><creatorcontrib>Hite, Jennifer K.</creatorcontrib><creatorcontrib>Gorsak, Cameron A.</creatorcontrib><creatorcontrib>Luna, Lunet E.</creatorcontrib><creatorcontrib>Anderson, Travis J.</creatorcontrib><creatorcontrib>Kub, Francis J.</creatorcontrib><title>Role of Capping Material and GaN Polarity on Mg Ion Implantation Activation</title><title>Physica status solidi. A, Applications and materials science</title><description>Ion implantation of magnesium for p‐type GaN presents many opportunities; however, activation has proven difficult due to the decomposition of GaN at relevant annealing temperatures. Herein, testing the efficacy of multiple in situ and ex situ caps based on aluminum nitride and silicon nitride for GaN protection during annealing is presented. Photoluminescence shows better activation for in situ metal organic chemical vapor deposition (MOCVD)‐grown aluminum nitride caps compared with ex situ sputtered aluminum nitride and the best performance by ex situ plasma‐enhanced chemical vapor deposition (PECVD) silicon nitride. Furthermore, only samples annealed at the highest temperatures tested show preferential growth of UV luminescence to yellow‐green luminescence reinforcing the need for better capping solutions and higher temperature annealing. Herein, direct comparison of in situ and ex situ caps including aluminum and silicon nitrides for stabilization of GaN during implanted dopant activation is described. Caps seen here evaluate on macroscopic integrity after annealing, whereas dopant activation and structural quality are also determined.</description><subject>Activation</subject><subject>Aluminum</subject><subject>Aluminum nitride</subject><subject>Annealing</subject><subject>Capping</subject><subject>Chemical vapor deposition</subject><subject>dopant activation SMRTA</subject><subject>Gallium nitrides</subject><subject>Ion implantation</subject><subject>Luminescence</subject><subject>Magnesium</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Photoluminescence</subject><subject>Polarity</subject><subject>protective caps</subject><subject>Silicon nitride</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPAjEUhBujiYhePTfxvPheu3TbIyGKRFAiem5qt0uWLNu1XTT8excxePQ0M8k37yVDyDXCAAHYbROjGTBABZBJdUJ6KAVLBEd1evQA5-QixjVAOkwz7JHHF1856gs6Nk1T1is6N60LpamoqXM6MU904SsTynZHfU3nKzrtZLppKlO3pi27MLJt-fljL8lZYarorn61T97u717HD8nseTIdj2aJ5ZKrRA2FtJhLmWa5hUJkLEWRM7AsA5CInIPLJS84Mw6Fc11SXCIg2EJY88775OZwtwn-Y-tiq9d-G-rupWZcYSY5Z8OOGhwoG3yMwRW6CeXGhJ1G0PvB9H4wfRysK6hD4aus3O4fWi-Wy9Ff9xsgp224</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Jacobs, Alan G.</creator><creator>Feigelson, Boris N.</creator><creator>Hite, Jennifer K.</creator><creator>Gorsak, Cameron A.</creator><creator>Luna, Lunet E.</creator><creator>Anderson, Travis J.</creator><creator>Kub, Francis J.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3542-2361</orcidid><orcidid>https://orcid.org/0000-0003-1250-5885</orcidid><orcidid>https://orcid.org/0000-0002-4090-0826</orcidid><orcidid>https://orcid.org/0000-0002-8350-759X</orcidid></search><sort><creationdate>202004</creationdate><title>Role of Capping Material and GaN Polarity on Mg Ion Implantation Activation</title><author>Jacobs, Alan G. ; Feigelson, Boris N. ; Hite, Jennifer K. ; Gorsak, Cameron A. ; Luna, Lunet E. ; Anderson, Travis J. ; Kub, Francis J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3839-9568c1d8847dc0f672416d20c2700811330ed83f32ae16ee0ed9381010cf6cab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation</topic><topic>Aluminum</topic><topic>Aluminum nitride</topic><topic>Annealing</topic><topic>Capping</topic><topic>Chemical vapor deposition</topic><topic>dopant activation SMRTA</topic><topic>Gallium nitrides</topic><topic>Ion implantation</topic><topic>Luminescence</topic><topic>Magnesium</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Photoluminescence</topic><topic>Polarity</topic><topic>protective caps</topic><topic>Silicon nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacobs, Alan G.</creatorcontrib><creatorcontrib>Feigelson, Boris N.</creatorcontrib><creatorcontrib>Hite, Jennifer K.</creatorcontrib><creatorcontrib>Gorsak, Cameron A.</creatorcontrib><creatorcontrib>Luna, Lunet E.</creatorcontrib><creatorcontrib>Anderson, Travis J.</creatorcontrib><creatorcontrib>Kub, Francis J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacobs, Alan G.</au><au>Feigelson, Boris N.</au><au>Hite, Jennifer K.</au><au>Gorsak, Cameron A.</au><au>Luna, Lunet E.</au><au>Anderson, Travis J.</au><au>Kub, Francis J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Capping Material and GaN Polarity on Mg Ion Implantation Activation</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2020-04</date><risdate>2020</risdate><volume>217</volume><issue>7</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Ion implantation of magnesium for p‐type GaN presents many opportunities; however, activation has proven difficult due to the decomposition of GaN at relevant annealing temperatures. Herein, testing the efficacy of multiple in situ and ex situ caps based on aluminum nitride and silicon nitride for GaN protection during annealing is presented. Photoluminescence shows better activation for in situ metal organic chemical vapor deposition (MOCVD)‐grown aluminum nitride caps compared with ex situ sputtered aluminum nitride and the best performance by ex situ plasma‐enhanced chemical vapor deposition (PECVD) silicon nitride. Furthermore, only samples annealed at the highest temperatures tested show preferential growth of UV luminescence to yellow‐green luminescence reinforcing the need for better capping solutions and higher temperature annealing. Herein, direct comparison of in situ and ex situ caps including aluminum and silicon nitrides for stabilization of GaN during implanted dopant activation is described. Caps seen here evaluate on macroscopic integrity after annealing, whereas dopant activation and structural quality are also determined.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201900789</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3542-2361</orcidid><orcidid>https://orcid.org/0000-0003-1250-5885</orcidid><orcidid>https://orcid.org/0000-0002-4090-0826</orcidid><orcidid>https://orcid.org/0000-0002-8350-759X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2020-04, Vol.217 (7), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2391783325
source Access via Wiley Online Library
subjects Activation
Aluminum
Aluminum nitride
Annealing
Capping
Chemical vapor deposition
dopant activation SMRTA
Gallium nitrides
Ion implantation
Luminescence
Magnesium
Metalorganic chemical vapor deposition
Organic chemicals
Organic chemistry
Photoluminescence
Polarity
protective caps
Silicon nitride
title Role of Capping Material and GaN Polarity on Mg Ion Implantation Activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A44%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Capping%20Material%20and%20GaN%20Polarity%20on%20Mg%20Ion%20Implantation%20Activation&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Jacobs,%20Alan%20G.&rft.date=2020-04&rft.volume=217&rft.issue=7&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201900789&rft_dat=%3Cproquest_cross%3E2391783325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391783325&rft_id=info:pmid/&rfr_iscdi=true