A Threshold-Based Min-Sum Algorithm to Lower the Error Floors of Quantized LDPC Decoders

For decoding low-density parity-check (LDPC) codes, the attenuated min-sum algorithm (AMSA) and the offset min-sum algorithm (OMSA) can outperform the conventional min-sum algorithm (MSA) at low signal-to-noise-ratios (SNRs), i.e. , in the "waterfall region" of the bit error rate curve. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2020-04, Vol.68 (4), p.2005-2015
Hauptverfasser: Hatami, Homayoon, Mitchell, David G. M., Costello, Daniel J., Fuja, Thomas E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For decoding low-density parity-check (LDPC) codes, the attenuated min-sum algorithm (AMSA) and the offset min-sum algorithm (OMSA) can outperform the conventional min-sum algorithm (MSA) at low signal-to-noise-ratios (SNRs), i.e. , in the "waterfall region" of the bit error rate curve. This paper demonstrates that, for quantized decoders, MSA actually outperforms AMSA and OMSA in the "error floor" region, and that all three algorithms suffer from a relatively high error floor. This motivates the introduction of a modified MSA that is designed to outperform MSA, AMSA, and OMSA across all SNRs. The new algorithm is based on the assumption that trapping sets are the major cause of the error floor for quantized LDPC decoders. A performance estimation tool based on trapping sets is used to verify the effectiveness of the new algorithm and also to guide parameter selection. We also show that the implementation complexity of the new algorithm is only slightly higher than that of AMSA or OMSA. Finally, the simulated performance of the new algorithm, using several classes of LDPC codes (including spatially coupled LDPC codes), is shown to outperform MSA, AMSA, and OMSA across all SNRs.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2020.2969902