Diversity-Aware Weighted Majority Vote Classifier for Imbalanced Data
In this paper, we propose a diversity-aware ensemble learning based algorithm, referred to as DAMVI, to deal with imbalanced binary classification tasks. Specifically, after learning base classifiers, the algorithm i) increases the weights of positive examples (minority class) which are "hard&q...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a diversity-aware ensemble learning based algorithm, referred to as DAMVI, to deal with imbalanced binary classification tasks. Specifically, after learning base classifiers, the algorithm i) increases the weights of positive examples (minority class) which are "hard" to classify with uniformly weighted base classifiers; and ii) then learns weights over base classifiers by optimizing the PAC-Bayesian C-Bound that takes into account the accuracy and diversity between the classifiers. We show efficiency of the proposed approach with respect to state-of-art models on predictive maintenance task, credit card fraud detection, webpage classification and medical applications. |
---|---|
ISSN: | 2331-8422 |