High-Efficiency Relativistic Generators of Nanosecond Pulses in the Millimeter-Wavelength Range

We propose and study a scheme of a microwave pulse generator operating in the frequency ranges near 37 and 73 GHz, in which the electron interaction with both the (−1)st harmonic of the counterpropagating TM 02 mode and the synchronous slowed-down TM 01 mode is combined in a sectionalized slow-wave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiophysics and quantum electronics 2019-12, Vol.62 (7-8), p.467-471
Hauptverfasser: Rostov, V. V., Tsygankov, R. V., Stepchenko, A. S., Koval’chuk, O. B., Sharypov, K. A., Shunailov, S. A., Ul’maskulov, M. R., Yalandin, M. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose and study a scheme of a microwave pulse generator operating in the frequency ranges near 37 and 73 GHz, in which the electron interaction with both the (−1)st harmonic of the counterpropagating TM 02 mode and the synchronous slowed-down TM 01 mode is combined in a sectionalized slow-wave system with an average diameter of 2.5λ. An efficient current modulation at the input of the slow-wave system is ensured in the region of the cathode–anode gap and the matching section, which reduces the diffraction loss of the energy flow directed towards the cathode. Numerical modeling shows that the efficiency of converting the electron-beam power to microwave radiation is up to 50%. Experiments demonstrate a stable regime of generation of subgigawatt pulses at an efficiency of more than 40% in the upper part of the millimeterwavelength range, which have a reproducible spatial wave structure corresponding predominantly to the TM 01 mode at the input of the emitting horn.
ISSN:0033-8443
1573-9120
DOI:10.1007/s11141-020-09992-0