An Experimental Study of the External-Signal Influence on the Oscillation Regime of a Megawatt Gyrotron
The radiation-frequency locking by an external signal is experimentally studied for a megawatt gyrotron. An external signal from a magnetron is applied to the operation space of the gyrotron at a frequency of 35 GHz via a synthesized two-mirror quasioptical converter developed at the Institute of Ap...
Gespeichert in:
Veröffentlicht in: | Radiophysics and quantum electronics 2019-12, Vol.62 (7-8), p.481-489 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The radiation-frequency locking by an external signal is experimentally studied for a megawatt gyrotron. An external signal from a magnetron is applied to the operation space of the gyrotron at a frequency of 35 GHz via a synthesized two-mirror quasioptical converter developed at the Institute of Applied Physics of the Russian Academy of Sciences. The radiation spectra are measured for both the frequency locking regime and the frequency beats. The locking region is constructed on the plane of two parameters, namely, the external-signal power and frequency. The experimental and theoretical results are compared to show a good agreement. |
---|---|
ISSN: | 0033-8443 1573-9120 |
DOI: | 10.1007/s11141-020-09994-y |