Narrow‐Band Thermal Emitter with Titanium Nitride Thin Film Demonstrating High Temperature Stability

A refractory wavelength selective thermal emitter is experimentally realized by the excitation of Tamm plasmon polaritons (TPPs) between a titanium nitride (TiN) thin film and a distributed Bragg reflector (DBR). The absorptance reaches nearly unity at ≈3.73 μm with the bandwidth of 0.36 μm in the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2020-04, Vol.8 (8), p.n/a
Hauptverfasser: Yang, Zih‐Ying, Ishii, Satoshi, Doan, Anh Tung, Shinde, Satish Laxman, Dao, Thang Duy, Lo, Yu‐Ping, Chen, Kuo‐Ping, Nagao, Tadaaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title Advanced optical materials
container_volume 8
creator Yang, Zih‐Ying
Ishii, Satoshi
Doan, Anh Tung
Shinde, Satish Laxman
Dao, Thang Duy
Lo, Yu‐Ping
Chen, Kuo‐Ping
Nagao, Tadaaki
description A refractory wavelength selective thermal emitter is experimentally realized by the excitation of Tamm plasmon polaritons (TPPs) between a titanium nitride (TiN) thin film and a distributed Bragg reflector (DBR). The absorptance reaches nearly unity at ≈3.73 μm with the bandwidth of 0.36 μm in the experiment. High temperature stabilities are confirmed up to 500 and 1000 °C in ambient and in vacuum, respectively. When the TiN TPP structure is compared to the TiN–insulator–TiN (TiN‐metal–insulator–metal (MIM)) structure, the former shows higher Q‐factor, which indicates the advantage of choosing the TiN TTP structure against the MIM structure. The proposed refractory TiN TPP structure is lithography‐free and scalable, which paves a way for large scale thermal emitters in practical usage. The titanium nitride (TiN) thermal emitter based on Tamm plasmon polaritons (TPP) structure with a top oxide layer can achieve near perfect absorption and possess a narrow bandwidth. Via the heating process, the formation of the top thermally oxidized layer provides a protection to the structure. The property can be sustained even at 1000 °C for 5 h in vacuum.
doi_str_mv 10.1002/adom.201900982
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2390480847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390480847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3172-2f413be34af9517456f7fa9170165ac0165720cdc1a57a2abcfba88c39e45b5d3</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EElXpymyJOcV2kjoeS38oUmkHymzdJHbrKk6K46jqxiPwjDwJiYqAjeX-6TvnSgehW0qGlBB2D3llh4xQQYhI2AXqMSrigBJOL__M12hQ13tCSLuEIuI9pFfgXHX8fP94gDLHm51yFgo8s8Z75fDR-B3eGA-laSxeGe9MrlrKlHhuCounylZl7R14U27xwmxbWtmDag-NU_jFQ2oK40836EpDUavBd--j1_lsM1kEy_Xj02S8DLKQchYwHdEwVWEEWsSUR_FIcw2CckJHMWRd5YxkeUYh5sAgzXQKSZKFQkVxGudhH92dfQ-uemtU7eW-alzZvpQsFCRKSBLxlhqeqcxVde2UlgdnLLiTpER2ccouTvkTZysQZ8HRFOr0Dy3H0_Xzr_YLnxF6wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390480847</pqid></control><display><type>article</type><title>Narrow‐Band Thermal Emitter with Titanium Nitride Thin Film Demonstrating High Temperature Stability</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Zih‐Ying ; Ishii, Satoshi ; Doan, Anh Tung ; Shinde, Satish Laxman ; Dao, Thang Duy ; Lo, Yu‐Ping ; Chen, Kuo‐Ping ; Nagao, Tadaaki</creator><creatorcontrib>Yang, Zih‐Ying ; Ishii, Satoshi ; Doan, Anh Tung ; Shinde, Satish Laxman ; Dao, Thang Duy ; Lo, Yu‐Ping ; Chen, Kuo‐Ping ; Nagao, Tadaaki</creatorcontrib><description>A refractory wavelength selective thermal emitter is experimentally realized by the excitation of Tamm plasmon polaritons (TPPs) between a titanium nitride (TiN) thin film and a distributed Bragg reflector (DBR). The absorptance reaches nearly unity at ≈3.73 μm with the bandwidth of 0.36 μm in the experiment. High temperature stabilities are confirmed up to 500 and 1000 °C in ambient and in vacuum, respectively. When the TiN TPP structure is compared to the TiN–insulator–TiN (TiN‐metal–insulator–metal (MIM)) structure, the former shows higher Q‐factor, which indicates the advantage of choosing the TiN TTP structure against the MIM structure. The proposed refractory TiN TPP structure is lithography‐free and scalable, which paves a way for large scale thermal emitters in practical usage. The titanium nitride (TiN) thermal emitter based on Tamm plasmon polaritons (TPP) structure with a top oxide layer can achieve near perfect absorption and possess a narrow bandwidth. Via the heating process, the formation of the top thermally oxidized layer provides a protection to the structure. The property can be sustained even at 1000 °C for 5 h in vacuum.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.201900982</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorptance ; Absorptivity ; Emitters ; High temperature ; Materials science ; narrow‐band emission ; Optics ; Polaritons ; refractory materials ; Tamm plasmon polaritons ; thermal emission ; Thin films ; Titanium nitride ; titanium nitrides</subject><ispartof>Advanced optical materials, 2020-04, Vol.8 (8), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3172-2f413be34af9517456f7fa9170165ac0165720cdc1a57a2abcfba88c39e45b5d3</citedby><cites>FETCH-LOGICAL-c3172-2f413be34af9517456f7fa9170165ac0165720cdc1a57a2abcfba88c39e45b5d3</cites><orcidid>0000-0001-5027-9079 ; 0000-0002-3291-7791 ; 0000-0001-6601-1464 ; 0000-0003-0731-8428 ; 0000-0002-6746-2686 ; 0000-0002-0353-3705 ; 0000-0001-6256-9145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.201900982$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.201900982$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Yang, Zih‐Ying</creatorcontrib><creatorcontrib>Ishii, Satoshi</creatorcontrib><creatorcontrib>Doan, Anh Tung</creatorcontrib><creatorcontrib>Shinde, Satish Laxman</creatorcontrib><creatorcontrib>Dao, Thang Duy</creatorcontrib><creatorcontrib>Lo, Yu‐Ping</creatorcontrib><creatorcontrib>Chen, Kuo‐Ping</creatorcontrib><creatorcontrib>Nagao, Tadaaki</creatorcontrib><title>Narrow‐Band Thermal Emitter with Titanium Nitride Thin Film Demonstrating High Temperature Stability</title><title>Advanced optical materials</title><description>A refractory wavelength selective thermal emitter is experimentally realized by the excitation of Tamm plasmon polaritons (TPPs) between a titanium nitride (TiN) thin film and a distributed Bragg reflector (DBR). The absorptance reaches nearly unity at ≈3.73 μm with the bandwidth of 0.36 μm in the experiment. High temperature stabilities are confirmed up to 500 and 1000 °C in ambient and in vacuum, respectively. When the TiN TPP structure is compared to the TiN–insulator–TiN (TiN‐metal–insulator–metal (MIM)) structure, the former shows higher Q‐factor, which indicates the advantage of choosing the TiN TTP structure against the MIM structure. The proposed refractory TiN TPP structure is lithography‐free and scalable, which paves a way for large scale thermal emitters in practical usage. The titanium nitride (TiN) thermal emitter based on Tamm plasmon polaritons (TPP) structure with a top oxide layer can achieve near perfect absorption and possess a narrow bandwidth. Via the heating process, the formation of the top thermally oxidized layer provides a protection to the structure. The property can be sustained even at 1000 °C for 5 h in vacuum.</description><subject>Absorptance</subject><subject>Absorptivity</subject><subject>Emitters</subject><subject>High temperature</subject><subject>Materials science</subject><subject>narrow‐band emission</subject><subject>Optics</subject><subject>Polaritons</subject><subject>refractory materials</subject><subject>Tamm plasmon polaritons</subject><subject>thermal emission</subject><subject>Thin films</subject><subject>Titanium nitride</subject><subject>titanium nitrides</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EElXpymyJOcV2kjoeS38oUmkHymzdJHbrKk6K46jqxiPwjDwJiYqAjeX-6TvnSgehW0qGlBB2D3llh4xQQYhI2AXqMSrigBJOL__M12hQ13tCSLuEIuI9pFfgXHX8fP94gDLHm51yFgo8s8Z75fDR-B3eGA-laSxeGe9MrlrKlHhuCounylZl7R14U27xwmxbWtmDag-NU_jFQ2oK40836EpDUavBd--j1_lsM1kEy_Xj02S8DLKQchYwHdEwVWEEWsSUR_FIcw2CckJHMWRd5YxkeUYh5sAgzXQKSZKFQkVxGudhH92dfQ-uemtU7eW-alzZvpQsFCRKSBLxlhqeqcxVde2UlgdnLLiTpER2ccouTvkTZysQZ8HRFOr0Dy3H0_Xzr_YLnxF6wg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Yang, Zih‐Ying</creator><creator>Ishii, Satoshi</creator><creator>Doan, Anh Tung</creator><creator>Shinde, Satish Laxman</creator><creator>Dao, Thang Duy</creator><creator>Lo, Yu‐Ping</creator><creator>Chen, Kuo‐Ping</creator><creator>Nagao, Tadaaki</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5027-9079</orcidid><orcidid>https://orcid.org/0000-0002-3291-7791</orcidid><orcidid>https://orcid.org/0000-0001-6601-1464</orcidid><orcidid>https://orcid.org/0000-0003-0731-8428</orcidid><orcidid>https://orcid.org/0000-0002-6746-2686</orcidid><orcidid>https://orcid.org/0000-0002-0353-3705</orcidid><orcidid>https://orcid.org/0000-0001-6256-9145</orcidid></search><sort><creationdate>20200401</creationdate><title>Narrow‐Band Thermal Emitter with Titanium Nitride Thin Film Demonstrating High Temperature Stability</title><author>Yang, Zih‐Ying ; Ishii, Satoshi ; Doan, Anh Tung ; Shinde, Satish Laxman ; Dao, Thang Duy ; Lo, Yu‐Ping ; Chen, Kuo‐Ping ; Nagao, Tadaaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3172-2f413be34af9517456f7fa9170165ac0165720cdc1a57a2abcfba88c39e45b5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorptance</topic><topic>Absorptivity</topic><topic>Emitters</topic><topic>High temperature</topic><topic>Materials science</topic><topic>narrow‐band emission</topic><topic>Optics</topic><topic>Polaritons</topic><topic>refractory materials</topic><topic>Tamm plasmon polaritons</topic><topic>thermal emission</topic><topic>Thin films</topic><topic>Titanium nitride</topic><topic>titanium nitrides</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zih‐Ying</creatorcontrib><creatorcontrib>Ishii, Satoshi</creatorcontrib><creatorcontrib>Doan, Anh Tung</creatorcontrib><creatorcontrib>Shinde, Satish Laxman</creatorcontrib><creatorcontrib>Dao, Thang Duy</creatorcontrib><creatorcontrib>Lo, Yu‐Ping</creatorcontrib><creatorcontrib>Chen, Kuo‐Ping</creatorcontrib><creatorcontrib>Nagao, Tadaaki</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zih‐Ying</au><au>Ishii, Satoshi</au><au>Doan, Anh Tung</au><au>Shinde, Satish Laxman</au><au>Dao, Thang Duy</au><au>Lo, Yu‐Ping</au><au>Chen, Kuo‐Ping</au><au>Nagao, Tadaaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Narrow‐Band Thermal Emitter with Titanium Nitride Thin Film Demonstrating High Temperature Stability</atitle><jtitle>Advanced optical materials</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>8</volume><issue>8</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>A refractory wavelength selective thermal emitter is experimentally realized by the excitation of Tamm plasmon polaritons (TPPs) between a titanium nitride (TiN) thin film and a distributed Bragg reflector (DBR). The absorptance reaches nearly unity at ≈3.73 μm with the bandwidth of 0.36 μm in the experiment. High temperature stabilities are confirmed up to 500 and 1000 °C in ambient and in vacuum, respectively. When the TiN TPP structure is compared to the TiN–insulator–TiN (TiN‐metal–insulator–metal (MIM)) structure, the former shows higher Q‐factor, which indicates the advantage of choosing the TiN TTP structure against the MIM structure. The proposed refractory TiN TPP structure is lithography‐free and scalable, which paves a way for large scale thermal emitters in practical usage. The titanium nitride (TiN) thermal emitter based on Tamm plasmon polaritons (TPP) structure with a top oxide layer can achieve near perfect absorption and possess a narrow bandwidth. Via the heating process, the formation of the top thermally oxidized layer provides a protection to the structure. The property can be sustained even at 1000 °C for 5 h in vacuum.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.201900982</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5027-9079</orcidid><orcidid>https://orcid.org/0000-0002-3291-7791</orcidid><orcidid>https://orcid.org/0000-0001-6601-1464</orcidid><orcidid>https://orcid.org/0000-0003-0731-8428</orcidid><orcidid>https://orcid.org/0000-0002-6746-2686</orcidid><orcidid>https://orcid.org/0000-0002-0353-3705</orcidid><orcidid>https://orcid.org/0000-0001-6256-9145</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2020-04, Vol.8 (8), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2390480847
source Wiley Online Library Journals Frontfile Complete
subjects Absorptance
Absorptivity
Emitters
High temperature
Materials science
narrow‐band emission
Optics
Polaritons
refractory materials
Tamm plasmon polaritons
thermal emission
Thin films
Titanium nitride
titanium nitrides
title Narrow‐Band Thermal Emitter with Titanium Nitride Thin Film Demonstrating High Temperature Stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Narrow%E2%80%90Band%20Thermal%20Emitter%20with%20Titanium%20Nitride%20Thin%20Film%20Demonstrating%20High%20Temperature%20Stability&rft.jtitle=Advanced%20optical%20materials&rft.au=Yang,%20Zih%E2%80%90Ying&rft.date=2020-04-01&rft.volume=8&rft.issue=8&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.201900982&rft_dat=%3Cproquest_cross%3E2390480847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390480847&rft_id=info:pmid/&rfr_iscdi=true