Processing and modification of hydrogel and its application in emerging contaminant adsorption and in catalyst immobilization: a review

Due to the wonderful property of hydrogels, they can provide a platform for a wide range of applications. Recently, there is a growing research interest in the development of potential hydrogel adsorbents in wastewater treatment due to their adsorption ability toward aqueous pollutants. It is import...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2020-04, Vol.27 (12), p.12967-12994
Hauptverfasser: Du, Hongxue, Shi, Shuyun, Liu, Wei, Teng, Honghui, Piao, Mingyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the wonderful property of hydrogels, they can provide a platform for a wide range of applications. Recently, there is a growing research interest in the development of potential hydrogel adsorbents in wastewater treatment due to their adsorption ability toward aqueous pollutants. It is important to prepare such a hydrogel that possesses appropriate robustness, adsorption capacity, and adsorption efficiency to meet the need of water treatment. In order to improve the property of hydrogels, much effort has been made by researchers to modify hydrogels, among which incorporating inorganic components into the polymeric networks is the most common method, which can reduce the product cost and simplify the preparation procedure. Not only can hydrogel be applied as adsorbent, but it also can be used as matrix for catalyst immobilization. In this review, the key advancement on the preparation and modification of hydrogels is discussed, with special emphasis on the introduction of inorganic materials into polymeric networks and consequential changes in the properties of mechanical strength, swelling, and adsorption. Besides, hydrogels used as adsorbents for removal of dyes and inorganic pollutants have been widely explored, but their use for adsorbing emerging contaminants from aqueous solution has not received much attention. Thus, this review is mainly focused on hydrogels’ application in removing emerging contaminants by adsorption. Furthermore, hydrogels can be also applied in immobilizing catalysts, such as enzyme and photocatalyst, to remove pollutants completely and avoid secondary pollution, so their progress as catalyst matrix is overviewed.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-020-08096-6