Fight intensity correlates with stronger and more mechanically efficient weapons in three species of Aegla crabs

In many species, individuals contest resources using specialized morphologies to overpower rivals, hereafter referred to as weapons. Despite their importance in fights, little is known about the selective forces affecting weapon evolution. This may be particularly important to understand why weapons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavioral ecology and sociobiology 2020-05, Vol.74 (5), p.1-11, Article 53
Hauptverfasser: Palaoro, Alexandre V., Peixoto, Paulo Enrique Cardoso, Benso-Lopes, Fernando, Boligon, Danessa Schardong, Santos, Sandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In many species, individuals contest resources using specialized morphologies to overpower rivals, hereafter referred to as weapons. Despite their importance in fights, little is known about the selective forces affecting weapon evolution. This may be particularly important to understand why weapons are highly variable among species. Due to their role during fighting, we expect that whenever fighting becomes more important for individual fitness so should the intensity of selection on weapon strength and morphology (which affect the efficiency of a weapon during combat). If true, we expect species that fight more intensely to have stronger and more mechanically efficient weapons. We tested this idea using males of three species of Aegla crabs (A. longirostri, A. abtao, and A. denticulata) that vary in their fight intensity. We compared the muscle size, the mechanical advantage (a proxy for the efficiency of the movable finger of the claw), and the correlation between weapon biomechanics and overall weapon shape (a proxy for the efficiency of the entire claw) among the species. We found that species with more intense fights presented stronger claws, higher mechanical advantage, and less variation in the regression between biomechanics and overall shape. Interestingly, the species with the largest claws were not the most mechanically efficient, suggesting that weapon size is not the sole factor behind weapon evolution. We conclude that fight intensity might be an important factor affecting weapon biomechanics, which ultimately might lead to a better understanding of weapon evolution.
ISSN:0340-5443
1432-0762
DOI:10.1007/s00265-020-02834-z