Büchi’s Problem in Modular Arithmetic for Arbitrary Quadratic Polynomials

Given a prime $p\geqslant 5$ and an integer $s\geqslant 1$ , we show that there exists an integer $M$ such that for any quadratic polynomial $f$ with coefficients in the ring of integers modulo $p^{s}$ , such that $f$ is not a square, if a sequence $(f(1),\ldots ,f(N))$ is a sequence of squares, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2019-12, Vol.62 (4), p.876-885
Hauptverfasser: Sáez, Pablo, Vidaux, Xavier, Vsemirnov, Maxim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a prime $p\geqslant 5$ and an integer $s\geqslant 1$ , we show that there exists an integer $M$ such that for any quadratic polynomial $f$ with coefficients in the ring of integers modulo $p^{s}$ , such that $f$ is not a square, if a sequence $(f(1),\ldots ,f(N))$ is a sequence of squares, then $N$ is at most $M$ . We also provide some explicit formulas for the optimal $M$ .
ISSN:0008-4395
1496-4287
DOI:10.4153/S0008439519000225