Büchi’s Problem in Modular Arithmetic for Arbitrary Quadratic Polynomials
Given a prime $p\geqslant 5$ and an integer $s\geqslant 1$ , we show that there exists an integer $M$ such that for any quadratic polynomial $f$ with coefficients in the ring of integers modulo $p^{s}$ , such that $f$ is not a square, if a sequence $(f(1),\ldots ,f(N))$ is a sequence of squares, the...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2019-12, Vol.62 (4), p.876-885 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a prime
$p\geqslant 5$
and an integer
$s\geqslant 1$
, we show that there exists an integer
$M$
such that for any quadratic polynomial
$f$
with coefficients in the ring of integers modulo
$p^{s}$
, such that
$f$
is not a square, if a sequence
$(f(1),\ldots ,f(N))$
is a sequence of squares, then
$N$
is at most
$M$
. We also provide some explicit formulas for the optimal
$M$
. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/S0008439519000225 |