Experimental simulation investigation of influence of depth on spalling characteristics in circular hard rock tunnel

A series of true-triaxial compression tests were performed on red sandstone cubic specimens with a circular hole to investigate the influence of depth on induced spalling in tunnels. The failure process of the hole sidewalls was monitored and recorded in real-time by a micro-video monitoring equipme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Central South University 2020-03, Vol.27 (3), p.891-910
Hauptverfasser: Luo, Yong, Gong, Feng-qiang, Li, Xi-bing, Wang, Shan-yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of true-triaxial compression tests were performed on red sandstone cubic specimens with a circular hole to investigate the influence of depth on induced spalling in tunnels. The failure process of the hole sidewalls was monitored and recorded in real-time by a micro-video monitoring equipment. The general failure evolution processes of the hole sidewall at different initial depths (500 m, 1000 m and 1500 m) during the adjustment of vertical stress were obtained. The results show that the hole sidewall all formed spalling before resulting in strain rockburst, and ultimately forming a V-shaped notch. The far-field principal stress for the initial failure of the tunnel shows a good positive linear correlation with the depth. As the depth increases, the stress required for the initial failure of the tunnels clearly increased, the spalling became more intense; the size and mass of the rock fragments and depth and width of the V-shaped notches increased, and the range of the failure zone extends along the hole sidewall from the local area to the entire area. Therefore, as the depth increases, the support area around the tunnel should be increased accordingly to prevent spalling.
ISSN:2095-2899
2227-5223
DOI:10.1007/s11771-020-4339-5