Angle-dependent magnetoresistance and its implications for Lifshitz transition in W2As3
Lifshitz transition represents a sudden reconstruction of Fermi surface structure, giving rise to anomalies in electronic properties of materials. Such a transition does not necessarily rely on symmetry-breaking and thus is topological. It holds a key to understand the origin of many exotic quantum...
Gespeichert in:
Veröffentlicht in: | npj quantum materials 2019-11, Vol.4 (1), Article 58 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | npj quantum materials |
container_volume | 4 |
creator | Wang, Jialu Yang, Haiyang Ding, Linchao You, Wei Xi, Chuanying Cheng, Jie Shi, Zhixiang Cao, Chao Luo, Yongkang Zhu, Zengwei Dai, Jianhui Tian, Mingliang Li, Yuke |
description | Lifshitz transition represents a sudden reconstruction of Fermi surface structure, giving rise to anomalies in electronic properties of materials. Such a transition does not necessarily rely on symmetry-breaking and thus is topological. It holds a key to understand the origin of many exotic quantum phenomena, for example, the mechanism of extremely large magnetoresistance (MR) in topological Dirac/Weyl semimetals. Here, we report studies of the angle-dependent MR (ADMR) and the thermoelectric effect in W
2
As
3
single crystal. The compound shows a large unsaturated MR (of about 7000% at 4.2 K and 53 T). The most striking finding is that the ADMR significantly deforms from the horizontal dumbbell-like shape above 40 K to the vertical lotus-like pattern below 30 K. The window of 30–40 K also corresponds substantial changes in Hall effect, thermopower and Nernst coefficient, implying an abrupt change of Fermi surface topology. Such a temperature-induced Lifshitz transition results in a compensation of electron-hole transport and the large MR as well. We thus suggest that the similar method can be applicable in detecting a Fermi-surface change of a variety of quantum states when a direct Fermi-surface measurement is not possible. |
doi_str_mv | 10.1038/s41535-019-0197-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389703044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389703044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-51884a47f808492917041d544e038eafa1631786dcb12f7923874c27a346619d3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgqf0B3gKeVzNJdpM9luJHoeBF6THE3WxNabNrJj3orzfLCnrx8JiBee_NzCPkGtgtMKHvUEIpyoJBPUIV5RmZcZEbWUl9_qe_JAvEPWOMA2hZVTOyXYbdwRWtG1xoXUj0aHfBpT469JhsaBy1oaU-IfXH4eAbm3wfkHZ9pBvf4btPXzRFG9CPA-oD3fIliity0dkDusVPnZPXh_uX1VOxeX5cr5abopG8TEUJWksrVaeZljWvQTEJbSmly38521moBChdtc0b8E7VXGglG66syNdD3Yo5uZl8h9h_nBwms-9PMeSVJnNrxQSTMrNgYjWxR4yuM0P0Rxs_DTAzRmimCE2Ob4QyZdbwSYOZG3Yu_jr_L_oG5DdySw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389703044</pqid></control><display><type>article</type><title>Angle-dependent magnetoresistance and its implications for Lifshitz transition in W2As3</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Jialu ; Yang, Haiyang ; Ding, Linchao ; You, Wei ; Xi, Chuanying ; Cheng, Jie ; Shi, Zhixiang ; Cao, Chao ; Luo, Yongkang ; Zhu, Zengwei ; Dai, Jianhui ; Tian, Mingliang ; Li, Yuke</creator><creatorcontrib>Wang, Jialu ; Yang, Haiyang ; Ding, Linchao ; You, Wei ; Xi, Chuanying ; Cheng, Jie ; Shi, Zhixiang ; Cao, Chao ; Luo, Yongkang ; Zhu, Zengwei ; Dai, Jianhui ; Tian, Mingliang ; Li, Yuke</creatorcontrib><description>Lifshitz transition represents a sudden reconstruction of Fermi surface structure, giving rise to anomalies in electronic properties of materials. Such a transition does not necessarily rely on symmetry-breaking and thus is topological. It holds a key to understand the origin of many exotic quantum phenomena, for example, the mechanism of extremely large magnetoresistance (MR) in topological Dirac/Weyl semimetals. Here, we report studies of the angle-dependent MR (ADMR) and the thermoelectric effect in W
2
As
3
single crystal. The compound shows a large unsaturated MR (of about 7000% at 4.2 K and 53 T). The most striking finding is that the ADMR significantly deforms from the horizontal dumbbell-like shape above 40 K to the vertical lotus-like pattern below 30 K. The window of 30–40 K also corresponds substantial changes in Hall effect, thermopower and Nernst coefficient, implying an abrupt change of Fermi surface topology. Such a temperature-induced Lifshitz transition results in a compensation of electron-hole transport and the large MR as well. We thus suggest that the similar method can be applicable in detecting a Fermi-surface change of a variety of quantum states when a direct Fermi-surface measurement is not possible.</description><identifier>ISSN: 2397-4648</identifier><identifier>EISSN: 2397-4648</identifier><identifier>DOI: 10.1038/s41535-019-0197-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/2792 ; 639/301/119/995 ; 639/766/119/2795 ; Anomalies ; Broken symmetry ; Change detection ; Condensed Matter Physics ; Fermi surfaces ; Hall effect ; Holes (electron deficiencies) ; Magnetoresistance ; Magnetoresistivity ; Material properties ; Metalloids ; Physics ; Physics and Astronomy ; Quantum phenomena ; Quantum Physics ; Single crystals ; Structural Materials ; Surface structure ; Surfaces and Interfaces ; Thermoelectricity ; Thin Films ; Topology</subject><ispartof>npj quantum materials, 2019-11, Vol.4 (1), Article 58</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-51884a47f808492917041d544e038eafa1631786dcb12f7923874c27a346619d3</citedby><cites>FETCH-LOGICAL-c425t-51884a47f808492917041d544e038eafa1631786dcb12f7923874c27a346619d3</cites><orcidid>0000-0002-6098-5767 ; 0000-0001-8282-1432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41535-019-0197-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41535-019-0197-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,42189,51576</link.rule.ids></links><search><creatorcontrib>Wang, Jialu</creatorcontrib><creatorcontrib>Yang, Haiyang</creatorcontrib><creatorcontrib>Ding, Linchao</creatorcontrib><creatorcontrib>You, Wei</creatorcontrib><creatorcontrib>Xi, Chuanying</creatorcontrib><creatorcontrib>Cheng, Jie</creatorcontrib><creatorcontrib>Shi, Zhixiang</creatorcontrib><creatorcontrib>Cao, Chao</creatorcontrib><creatorcontrib>Luo, Yongkang</creatorcontrib><creatorcontrib>Zhu, Zengwei</creatorcontrib><creatorcontrib>Dai, Jianhui</creatorcontrib><creatorcontrib>Tian, Mingliang</creatorcontrib><creatorcontrib>Li, Yuke</creatorcontrib><title>Angle-dependent magnetoresistance and its implications for Lifshitz transition in W2As3</title><title>npj quantum materials</title><addtitle>npj Quantum Mater</addtitle><description>Lifshitz transition represents a sudden reconstruction of Fermi surface structure, giving rise to anomalies in electronic properties of materials. Such a transition does not necessarily rely on symmetry-breaking and thus is topological. It holds a key to understand the origin of many exotic quantum phenomena, for example, the mechanism of extremely large magnetoresistance (MR) in topological Dirac/Weyl semimetals. Here, we report studies of the angle-dependent MR (ADMR) and the thermoelectric effect in W
2
As
3
single crystal. The compound shows a large unsaturated MR (of about 7000% at 4.2 K and 53 T). The most striking finding is that the ADMR significantly deforms from the horizontal dumbbell-like shape above 40 K to the vertical lotus-like pattern below 30 K. The window of 30–40 K also corresponds substantial changes in Hall effect, thermopower and Nernst coefficient, implying an abrupt change of Fermi surface topology. Such a temperature-induced Lifshitz transition results in a compensation of electron-hole transport and the large MR as well. We thus suggest that the similar method can be applicable in detecting a Fermi-surface change of a variety of quantum states when a direct Fermi-surface measurement is not possible.</description><subject>639/301/119/2792</subject><subject>639/301/119/995</subject><subject>639/766/119/2795</subject><subject>Anomalies</subject><subject>Broken symmetry</subject><subject>Change detection</subject><subject>Condensed Matter Physics</subject><subject>Fermi surfaces</subject><subject>Hall effect</subject><subject>Holes (electron deficiencies)</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Material properties</subject><subject>Metalloids</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum phenomena</subject><subject>Quantum Physics</subject><subject>Single crystals</subject><subject>Structural Materials</subject><subject>Surface structure</subject><subject>Surfaces and Interfaces</subject><subject>Thermoelectricity</subject><subject>Thin Films</subject><subject>Topology</subject><issn>2397-4648</issn><issn>2397-4648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UE1LAzEQDaJgqf0B3gKeVzNJdpM9luJHoeBF6THE3WxNabNrJj3orzfLCnrx8JiBee_NzCPkGtgtMKHvUEIpyoJBPUIV5RmZcZEbWUl9_qe_JAvEPWOMA2hZVTOyXYbdwRWtG1xoXUj0aHfBpT469JhsaBy1oaU-IfXH4eAbm3wfkHZ9pBvf4btPXzRFG9CPA-oD3fIliity0dkDusVPnZPXh_uX1VOxeX5cr5abopG8TEUJWksrVaeZljWvQTEJbSmly38521moBChdtc0b8E7VXGglG66syNdD3Yo5uZl8h9h_nBwms-9PMeSVJnNrxQSTMrNgYjWxR4yuM0P0Rxs_DTAzRmimCE2Ob4QyZdbwSYOZG3Yu_jr_L_oG5DdySw</recordid><startdate>20191129</startdate><enddate>20191129</enddate><creator>Wang, Jialu</creator><creator>Yang, Haiyang</creator><creator>Ding, Linchao</creator><creator>You, Wei</creator><creator>Xi, Chuanying</creator><creator>Cheng, Jie</creator><creator>Shi, Zhixiang</creator><creator>Cao, Chao</creator><creator>Luo, Yongkang</creator><creator>Zhu, Zengwei</creator><creator>Dai, Jianhui</creator><creator>Tian, Mingliang</creator><creator>Li, Yuke</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6098-5767</orcidid><orcidid>https://orcid.org/0000-0001-8282-1432</orcidid></search><sort><creationdate>20191129</creationdate><title>Angle-dependent magnetoresistance and its implications for Lifshitz transition in W2As3</title><author>Wang, Jialu ; Yang, Haiyang ; Ding, Linchao ; You, Wei ; Xi, Chuanying ; Cheng, Jie ; Shi, Zhixiang ; Cao, Chao ; Luo, Yongkang ; Zhu, Zengwei ; Dai, Jianhui ; Tian, Mingliang ; Li, Yuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-51884a47f808492917041d544e038eafa1631786dcb12f7923874c27a346619d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/119/2792</topic><topic>639/301/119/995</topic><topic>639/766/119/2795</topic><topic>Anomalies</topic><topic>Broken symmetry</topic><topic>Change detection</topic><topic>Condensed Matter Physics</topic><topic>Fermi surfaces</topic><topic>Hall effect</topic><topic>Holes (electron deficiencies)</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Material properties</topic><topic>Metalloids</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum phenomena</topic><topic>Quantum Physics</topic><topic>Single crystals</topic><topic>Structural Materials</topic><topic>Surface structure</topic><topic>Surfaces and Interfaces</topic><topic>Thermoelectricity</topic><topic>Thin Films</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jialu</creatorcontrib><creatorcontrib>Yang, Haiyang</creatorcontrib><creatorcontrib>Ding, Linchao</creatorcontrib><creatorcontrib>You, Wei</creatorcontrib><creatorcontrib>Xi, Chuanying</creatorcontrib><creatorcontrib>Cheng, Jie</creatorcontrib><creatorcontrib>Shi, Zhixiang</creatorcontrib><creatorcontrib>Cao, Chao</creatorcontrib><creatorcontrib>Luo, Yongkang</creatorcontrib><creatorcontrib>Zhu, Zengwei</creatorcontrib><creatorcontrib>Dai, Jianhui</creatorcontrib><creatorcontrib>Tian, Mingliang</creatorcontrib><creatorcontrib>Li, Yuke</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj quantum materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jialu</au><au>Yang, Haiyang</au><au>Ding, Linchao</au><au>You, Wei</au><au>Xi, Chuanying</au><au>Cheng, Jie</au><au>Shi, Zhixiang</au><au>Cao, Chao</au><au>Luo, Yongkang</au><au>Zhu, Zengwei</au><au>Dai, Jianhui</au><au>Tian, Mingliang</au><au>Li, Yuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angle-dependent magnetoresistance and its implications for Lifshitz transition in W2As3</atitle><jtitle>npj quantum materials</jtitle><stitle>npj Quantum Mater</stitle><date>2019-11-29</date><risdate>2019</risdate><volume>4</volume><issue>1</issue><artnum>58</artnum><issn>2397-4648</issn><eissn>2397-4648</eissn><abstract>Lifshitz transition represents a sudden reconstruction of Fermi surface structure, giving rise to anomalies in electronic properties of materials. Such a transition does not necessarily rely on symmetry-breaking and thus is topological. It holds a key to understand the origin of many exotic quantum phenomena, for example, the mechanism of extremely large magnetoresistance (MR) in topological Dirac/Weyl semimetals. Here, we report studies of the angle-dependent MR (ADMR) and the thermoelectric effect in W
2
As
3
single crystal. The compound shows a large unsaturated MR (of about 7000% at 4.2 K and 53 T). The most striking finding is that the ADMR significantly deforms from the horizontal dumbbell-like shape above 40 K to the vertical lotus-like pattern below 30 K. The window of 30–40 K also corresponds substantial changes in Hall effect, thermopower and Nernst coefficient, implying an abrupt change of Fermi surface topology. Such a temperature-induced Lifshitz transition results in a compensation of electron-hole transport and the large MR as well. We thus suggest that the similar method can be applicable in detecting a Fermi-surface change of a variety of quantum states when a direct Fermi-surface measurement is not possible.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41535-019-0197-5</doi><orcidid>https://orcid.org/0000-0002-6098-5767</orcidid><orcidid>https://orcid.org/0000-0001-8282-1432</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2397-4648 |
ispartof | npj quantum materials, 2019-11, Vol.4 (1), Article 58 |
issn | 2397-4648 2397-4648 |
language | eng |
recordid | cdi_proquest_journals_2389703044 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals |
subjects | 639/301/119/2792 639/301/119/995 639/766/119/2795 Anomalies Broken symmetry Change detection Condensed Matter Physics Fermi surfaces Hall effect Holes (electron deficiencies) Magnetoresistance Magnetoresistivity Material properties Metalloids Physics Physics and Astronomy Quantum phenomena Quantum Physics Single crystals Structural Materials Surface structure Surfaces and Interfaces Thermoelectricity Thin Films Topology |
title | Angle-dependent magnetoresistance and its implications for Lifshitz transition in W2As3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angle-dependent%20magnetoresistance%20and%20its%20implications%20for%20Lifshitz%20transition%20in%20W2As3&rft.jtitle=npj%20quantum%20materials&rft.au=Wang,%20Jialu&rft.date=2019-11-29&rft.volume=4&rft.issue=1&rft.artnum=58&rft.issn=2397-4648&rft.eissn=2397-4648&rft_id=info:doi/10.1038/s41535-019-0197-5&rft_dat=%3Cproquest_cross%3E2389703044%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389703044&rft_id=info:pmid/&rfr_iscdi=true |