Angle-dependent magnetoresistance and its implications for Lifshitz transition in W2As3
Lifshitz transition represents a sudden reconstruction of Fermi surface structure, giving rise to anomalies in electronic properties of materials. Such a transition does not necessarily rely on symmetry-breaking and thus is topological. It holds a key to understand the origin of many exotic quantum...
Gespeichert in:
Veröffentlicht in: | npj quantum materials 2019-11, Vol.4 (1), Article 58 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lifshitz transition represents a sudden reconstruction of Fermi surface structure, giving rise to anomalies in electronic properties of materials. Such a transition does not necessarily rely on symmetry-breaking and thus is topological. It holds a key to understand the origin of many exotic quantum phenomena, for example, the mechanism of extremely large magnetoresistance (MR) in topological Dirac/Weyl semimetals. Here, we report studies of the angle-dependent MR (ADMR) and the thermoelectric effect in W
2
As
3
single crystal. The compound shows a large unsaturated MR (of about 7000% at 4.2 K and 53 T). The most striking finding is that the ADMR significantly deforms from the horizontal dumbbell-like shape above 40 K to the vertical lotus-like pattern below 30 K. The window of 30–40 K also corresponds substantial changes in Hall effect, thermopower and Nernst coefficient, implying an abrupt change of Fermi surface topology. Such a temperature-induced Lifshitz transition results in a compensation of electron-hole transport and the large MR as well. We thus suggest that the similar method can be applicable in detecting a Fermi-surface change of a variety of quantum states when a direct Fermi-surface measurement is not possible. |
---|---|
ISSN: | 2397-4648 2397-4648 |
DOI: | 10.1038/s41535-019-0197-5 |