Genome-wide unique insertion sequences among five Brucella species and demonstration of differential identification of Brucella by multiplex PCR assay

Brucellosis is a neglected zoonotic disease caused by alpha proteobacterial genus Brucella comprising of facultative intracellular pathogenic species that can infect both animals and humans. In this study, we aimed to identify genome-wide unique insertion sequence (IS) elements among Brucella abortu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-04, Vol.10 (1), p.6368, Article 6368
Hauptverfasser: Paul, Soumya, Peddayelachagiri, Bhavani Venkataswamachari, Gogoi, Madhurjya, Nagaraj, Sowmya, Ramlal, Shylaja, Konduru, Balakrishna, Batra, Harsh V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Brucellosis is a neglected zoonotic disease caused by alpha proteobacterial genus Brucella comprising of facultative intracellular pathogenic species that can infect both animals and humans. In this study, we aimed to identify genome-wide unique insertion sequence (IS) elements among Brucella abortus, B. melitensis, B. ovis, B. suis and B. canis for use in species differentiation by conducting an intensive in silico -based comparative genomic analysis. As a result, 25, 27, 37, 86 and 3 unique ISs were identified respectively and they had a striking pattern of distribution among them. To explain, a particular IS would be present in four species with 100% identity whereas completely absent in the fifth species. However, flanking regions of that IS element would be highly identical and conserved in all five species. Species-specific primers designed on these flanking conserved regions resulted in two different amplicons grouping the species into two: one that possesses IS and the other that lacks it. Seeking for species-specific amplicon size for particular species was sufficient to identify it irrespective of biovar. A multiplex PCR developed using these primers resulted in successful differentiation of the five species irrespective of biovars with significant specificity and sensitivity when examined on clinical samples.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-62472-3