Role of the orbital degree of freedom in iron-based superconductors
Almost a decade has passed since the serendipitous discovery of the iron-based high temperature superconductors (FeSCs) in 2008. The fact that, as in the copper oxide high temperature superconductors, long-range antiferromagnetism in the FeSCs arises in proximity to superconductivity immediately rai...
Gespeichert in:
Veröffentlicht in: | npj quantum materials 2017-10, Vol.2 (1), Article 57 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Almost a decade has passed since the serendipitous discovery of the iron-based high temperature superconductors (FeSCs) in 2008. The fact that, as in the copper oxide high temperature superconductors, long-range antiferromagnetism in the FeSCs arises in proximity to superconductivity immediately raised the question of the degree of similarity between the two. Despite the great resemblance in their phase diagrams, there exist important differences between the FeSCs and the cuprates that need to be considered in order to paint a full picture of these two families of high temperature superconductors. One of the key differences is the multi-orbital multi-band nature of the FeSCs, which contrasts with the effective single-band nature of the cuprates. Systematic studies of orbital related phenomena in FeSCs have been largely lacking. In this review, we summarize angle-resolved photoemission spectroscopy (ARPES) measurements across various FeSC families that have been reported in literature, focusing on the systematic trends of orbital dependent electron correlations and the role of different Fe 3d orbitals in driving the nematic transition, the spin-density-wave transition, and superconductivity. |
---|---|
ISSN: | 2397-4648 2397-4648 |
DOI: | 10.1038/s41535-017-0059-y |