X-ray diffraction methods for structural diagnostics of materials: progress and achievements
The development of X-ray diffractometry at the turn of the 21st century is presented. The review covers instrumentation development for structural studies based on the use of both standard continuously radiating X-ray generators and state-of-the-art sources of ultrashort and ultra-bright X-ray pulse...
Gespeichert in:
Veröffentlicht in: | Physics Uspekhi 2020-01, Vol.63 (1), p.2-32 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of X-ray diffractometry at the turn of the 21st century is presented. The review covers instrumentation development for structural studies based on the use of both standard continuously radiating X-ray generators and state-of-the-art sources of ultrashort and ultra-bright X-ray pulses. The latter technique enables investigation of the structural dynamics of condensed matter in a 4D space-time continuum with a resolution reaching a tenth of a femtosecond. New engineering approaches to enhancing the sensitivity, accuracy, and efficiency of X-ray diffraction experiments are discussed, including new and promising X-rays sources, reflective collimating and focusing X-ray optical devices, and fast low-noise and radiation-resistant position-sensitive X-ray detectors, as well as a new generation of X-ray diffractometers developed based on these elements. The presentation is focused on modern engineering solutions that enable academic and applied-research laboratories to perform X-ray diffraction studies on-site, which earlier were only feasible using synchrotron radiation sources at international resource sharing centers. |
---|---|
ISSN: | 1063-7869 1468-4780 |
DOI: | 10.3367/UFNe.2018.10.038435 |