Confined growth of pyridinic N-Mo2C sites on MXenes for hydrogen evolution

Developing low-cost and high-performance hydrogen evolution reaction (HER) electrocatalysts is a key research area for scalable hydrogen production from water electrolysis. Here, a hybrid of nitrogen-doped carbon encapsulated Mo2C nanodots on Ti3C2Tx MXene (Mo2C/Ti3C2Tx@NC) is developed through in s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-01, Vol.8 (15), p.7109-7116
Hauptverfasser: Wang, Hao, Lin, Yanping, Liu, Shuyuan, Li, Jianmin, Bu, Liangmin, Chen, Jianmei, Xiao, Xu, Choi, Jin-Ho, Gao, Lijun, Lee, Jong-Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing low-cost and high-performance hydrogen evolution reaction (HER) electrocatalysts is a key research area for scalable hydrogen production from water electrolysis. Here, a hybrid of nitrogen-doped carbon encapsulated Mo2C nanodots on Ti3C2Tx MXene (Mo2C/Ti3C2Tx@NC) is developed through in situ polymerization of dopamine and a Mo precursor on the Ti3C2Tx MXene surface. During the annealing treatment, the polydopamine plays multiple roles in forming N-doped carbon, confining MoO42- ions into ultrasmall Mo2C nanodots, and stabilizing the MXene flakes against spontaneous oxidation. The as-synthesized hybrid exhibits excellent HER activity in acidic electrolyte with an overpotential of 53 mV at 10 mA cm(-2) and excellent stability over 30 hours. The combination of experiments and simulations demonstrates that pyridinic N-doped carbon coated Mo2C nanodots serve as the active sites and Ti3C2Tx MXene facilitates the charge transfer, synergistically contributing to the superior HER performance.
ISSN:2050-7488
2050-7496
DOI:10.1039/d0ta01697g