A Novel Genetic Algorithm for Global Optimization

This paper presents a novel genetic algorithm for globally solving un-constraint optimization problem. In this algorithm, a new real coded crossover operator is proposed firstly. Furthermore, for improving the convergence speed and the searching ability of our algorithm, the good point set theory ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Mathematicae Applicatae Sinica 2020-03, Vol.36 (2), p.482-491
Hauptverfasser: Wang, Chun-feng, Liu, Kui, Shen, Pei-ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel genetic algorithm for globally solving un-constraint optimization problem. In this algorithm, a new real coded crossover operator is proposed firstly. Furthermore, for improving the convergence speed and the searching ability of our algorithm, the good point set theory rather than random selection is used to generate the initial population, and the chaotic search operator is adopted in the best solution of the current iteration. The experimental results tested on numerical benchmark functions show that this algorithm has excellent solution quality and convergence characteristics, and performs better than some algorithms.
ISSN:0168-9673
1618-3932
DOI:10.1007/s10255-020-0930-7