Relationships between Renewable Energy Consumption, Social Factors, and Health: A Panel Vector Auto Regression Analysis of a Cluster of 12 EU Countries
One of the key indicators of a population’s well-being and the economic development of a country is represented by health, the main proxy for which is life expectancy at birth. Some factors, such as industrialization and modernization, have allowed this to improve considerably. On the other hand, al...
Gespeichert in:
Veröffentlicht in: | Sustainability 2020-04, Vol.12 (7), p.2915 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the key indicators of a population’s well-being and the economic development of a country is represented by health, the main proxy for which is life expectancy at birth. Some factors, such as industrialization and modernization, have allowed this to improve considerably. On the other hand, along with high global population growth, the factor which may jeopardize human health the most is environmental degradation, which can be tackled through the transition to renewable energy. The main purpose of our study is to investigate the relationship between renewable energy consumption, social factors, and health, using a Panel Vector Auto Regression (PVAR) technique. We explore the link between some proxy variables for renewable energy consumption, government policy, general public awareness, the market, lobbying activity, the energy dependence on third countries, and health, spanning the period from 1990 to 2015, for a cluster of 12 European countries characterized by common features. Specifically, our analysis shows the importance of having a stringent policy for the development of renewable energy consumption and its influence over other social factors, rather than the existence of causal relationships between health and renewable energy consumption for the analyzed countries. This kind of analysis has a great potential for policy-makers. Further, a deeper understanding of these relationships can create a more effective decision-making process. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su12072915 |