Development of an interference-minimized amperometric-FIA glucose biosensor at a pyrocatechol violet/glucose dehydrogenase-modified graphite pencil electrode
A modified disposable electrode formed by immobilization of glucose dehydrogenase (DHG) onto pyrocatechol violet (Pcv)-modified graphite pencil electrode (GPE) was proposed for the flow injection (FI) amperometric glucose biosensor. Cyclic voltammetric experiments show that Pcv illustrates a good el...
Gespeichert in:
Veröffentlicht in: | Chemical papers 2020-06, Vol.74 (6), p.1923-1936 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A modified disposable electrode formed by immobilization of glucose dehydrogenase (DHG) onto pyrocatechol violet (Pcv)-modified graphite pencil electrode (GPE) was proposed for the flow injection (FI) amperometric glucose biosensor. Cyclic voltammetric experiments show that Pcv illustrates a good electrocatalytic effect towards the oxidation of enzymatically produced NADH. Although electrocatalytic oxidation of enzymatically generated NADH at the DHG/Poly-Pcv/GPE was successfully performed at + 250 mV in FIA system, some molecules such as ascorbic acid (AA), dopamine (DA) and uric acid (UA) give a significant positive interference due to their oxidation at this working potential. To overcome these interferences, an injector filled with a pre-oxidant, sodium bismuthate (NaBiO
3
), was used in the FI amperometric glucose biosensor at the DHG/Poly-Pcv/GPE. Results showed that the interferences of these molecules were significantly minimized, because they were oxidized by NaBiO
3
in the injector before reaching the electrode surface in the flow cell. The constructed biosensor showed that a linear calibration curve was obtained in the range between 5.0 µM and 500 µM glucose with a detection limit of 1.2 µM. This proposed glucose biosensor including elimination of interferences of some oxidizable species was successfully applied to the real and artificial samples. |
---|---|
ISSN: | 2585-7290 0366-6352 1336-9075 |
DOI: | 10.1007/s11696-019-01036-w |