Self-Supervised Monocular Scene Flow Estimation
Scene flow estimation has been receiving increasing attention for 3D environment perception. Monocular scene flow estimation -- obtaining 3D structure and 3D motion from two temporally consecutive images -- is a highly ill-posed problem, and practical solutions are lacking to date. We propose a nove...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Scene flow estimation has been receiving increasing attention for 3D environment perception. Monocular scene flow estimation -- obtaining 3D structure and 3D motion from two temporally consecutive images -- is a highly ill-posed problem, and practical solutions are lacking to date. We propose a novel monocular scene flow method that yields competitive accuracy and real-time performance. By taking an inverse problem view, we design a single convolutional neural network (CNN) that successfully estimates depth and 3D motion simultaneously from a classical optical flow cost volume. We adopt self-supervised learning with 3D loss functions and occlusion reasoning to leverage unlabeled data. We validate our design choices, including the proxy loss and augmentation setup. Our model achieves state-of-the-art accuracy among unsupervised/self-supervised learning approaches to monocular scene flow, and yields competitive results for the optical flow and monocular depth estimation sub-tasks. Semi-supervised fine-tuning further improves the accuracy and yields promising results in real-time. |
---|---|
ISSN: | 2331-8422 |