Convolutional Neural Networks based automated segmentation and labelling of the lumbar spine X-ray

The aim of this study is to investigate the segmentation accuracies of different segmentation networks trained on 730 manually annotated lateral lumbar spine X-rays. Instance segmentation networks were compared to semantic segmentation networks. The study cohort comprised diseased spines and postope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-04
Hauptverfasser: Konya, Sandor, Sai, Natarajan T, Allouch, Hassan, Kais Abu Nahleh, Omneya Yakout Dogheim, Boehm, Heinrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study is to investigate the segmentation accuracies of different segmentation networks trained on 730 manually annotated lateral lumbar spine X-rays. Instance segmentation networks were compared to semantic segmentation networks. The study cohort comprised diseased spines and postoperative images with metallic implants. The average mean accuracy and mean intersection over union (IoU) was up to 3 percent better for the best performing instance segmentation model, the average pixel accuracy and weighted IoU were slightly better for the best performing semantic segmentation model. Moreover, the inferences of the instance segmentation models are easier to implement for further processing pipelines in clinical decision support.
ISSN:2331-8422