Platelets disrupt vasculogenic mimicry by cancer cells
Tumour vasculature supports the growth and progression of solid cancers with both angiogenesis (endothelial cell proliferation) and vasculogenic mimicry (VM, the formation of vascular structures by cancer cells themselves) predictors of poor patient outcomes. Increased circulating platelet counts al...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-04, Vol.10 (1), p.5869-5869, Article 5869 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tumour vasculature supports the growth and progression of solid cancers with both angiogenesis (endothelial cell proliferation) and vasculogenic mimicry (VM, the formation of vascular structures by cancer cells themselves) predictors of poor patient outcomes. Increased circulating platelet counts also predict poor outcome for cancer patients but the influence of platelets on tumour vasculature is incompletely understood. Herein, we show with
in vitro
assays that platelets did not influence angiogenesis but did actively inhibit VM formation by cancer cell lines. Both platelet sized beads and the releasates from platelets were partially effective at inhibiting VM formation suggesting that direct contact maximises the effect. Platelets also promoted cancer cell invasion
in vitro
. B16F10 melanomas in
Bcl-x
Plt20/Plt20
thrombocytopenic mice showed a higher content of VM than their wildtype counterparts while angiogenesis did not differ. In a xenograft mouse model of breast cancer with low-dose aspirin to inactivate the platelets, the burden of MDA-MB-231-LM2 breast cancer cells was reduced and the gene expression profile of the cancer cells was altered; but no effect on tumour vasculature was observed. Taken together, this study provides new insights into the action of platelets on VM formation and their involvement in cancer progression. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-62648-x |