Dual‐Region Resonant Meander Metamaterial

Metamaterials are engineered structures designed to interact with electromagnetic radiation, whereby the frequency range in which metamaterials respond depends on their dimensions. In this paper, it is demonstrated that a metamaterial can be functional in more than one frequency region. An advanced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2020-04, Vol.8 (7), p.n/a
Hauptverfasser: Manjunath, Shridhar, Liu, Mingkai, Raj, Vidur, Aoni, Rifat A., Powell, David A., Shadrivov, Ilya V., Rahmani, Mohsen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Advanced optical materials
container_volume 8
creator Manjunath, Shridhar
Liu, Mingkai
Raj, Vidur
Aoni, Rifat A.
Powell, David A.
Shadrivov, Ilya V.
Rahmani, Mohsen
description Metamaterials are engineered structures designed to interact with electromagnetic radiation, whereby the frequency range in which metamaterials respond depends on their dimensions. In this paper, it is demonstrated that a metamaterial can be functional in more than one frequency region. An advanced metamaterial is demonstrated that can interact with both terahertz (THz) and near‐infrared (NIR) frequencies, concurrently. This work exploits meander line resonators with nanoscale linewidth distributed over microscale areas, and experimentally demonstrates that such a metamaterial can simultaneously interact with NIR and THz waves. The engineered metamaterial acts as a plasmonic grating in the NIR range and simultaneously acts as an array of electric resonators in the THz range. Moreover, the performance of the engineered metamaterial is polarization‐independent in both wavelength regions. Finally, a unique feature of the proposed metamaterial is that it enables resonant frequency tuning in the THz region without affecting the NIR response. All these novel advantages of dual‐band meander metamaterial make it an ideal alternative for cutting‐edge applications such as bi‐functional sensing, imaging, filtering, modulation, and absorption. The common understanding in the scientific community is that a given metamaterial operates within a particular frequency range determined by its dimensions. The advanced metamaterial structure can simultaneously interact with near‐infrared (NIR) and terahertz (THz) frequencies, with the aid of nanoscale features in the resonators. This structure is polarization‐independent and allows tuning of the THz resonant frequency without affecting the NIR response.
doi_str_mv 10.1002/adom.201901658
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2386112380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386112380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-35ecf21485b4b51d33fd5ad71f94661f2ee87b1c77f614031f2b494fda34fb3</originalsourceid><addsrcrecordid>eNqFkM9KAzEQxoMoWGqvngseZddMkt1sjqX1H7QUqveQ3SSyZXdTky3Sm4_gM_okpqyoNy_zzQy_bwY-hC4Bp4AxuVHatSnBIDDkWXGCRgRElgDmcPqnP0eTELYY4zhQwfgIXS_2qvl8_9iYl9p1040JrlNdP10Z1Wnjo_aqVb3xtWou0JlVTTCTbx2jp7vb5_lDslzfP85ny6SiwIuEZqayBFiRlazMQFNqdaY0BytYnoMlxhS8hIpzmwPDNG5KJpjVijJb0jG6Gq7uvHvdm9DLrdv7Lj6UhBY5QKw4UulAVd6F4I2VO1-3yh8kYHlMRB4TkT-JRIMYDG91Yw7_0HK2WK9-vV_bnWQZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386112380</pqid></control><display><type>article</type><title>Dual‐Region Resonant Meander Metamaterial</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Manjunath, Shridhar ; Liu, Mingkai ; Raj, Vidur ; Aoni, Rifat A. ; Powell, David A. ; Shadrivov, Ilya V. ; Rahmani, Mohsen</creator><creatorcontrib>Manjunath, Shridhar ; Liu, Mingkai ; Raj, Vidur ; Aoni, Rifat A. ; Powell, David A. ; Shadrivov, Ilya V. ; Rahmani, Mohsen</creatorcontrib><description>Metamaterials are engineered structures designed to interact with electromagnetic radiation, whereby the frequency range in which metamaterials respond depends on their dimensions. In this paper, it is demonstrated that a metamaterial can be functional in more than one frequency region. An advanced metamaterial is demonstrated that can interact with both terahertz (THz) and near‐infrared (NIR) frequencies, concurrently. This work exploits meander line resonators with nanoscale linewidth distributed over microscale areas, and experimentally demonstrates that such a metamaterial can simultaneously interact with NIR and THz waves. The engineered metamaterial acts as a plasmonic grating in the NIR range and simultaneously acts as an array of electric resonators in the THz range. Moreover, the performance of the engineered metamaterial is polarization‐independent in both wavelength regions. Finally, a unique feature of the proposed metamaterial is that it enables resonant frequency tuning in the THz region without affecting the NIR response. All these novel advantages of dual‐band meander metamaterial make it an ideal alternative for cutting‐edge applications such as bi‐functional sensing, imaging, filtering, modulation, and absorption. The common understanding in the scientific community is that a given metamaterial operates within a particular frequency range determined by its dimensions. The advanced metamaterial structure can simultaneously interact with near‐infrared (NIR) and terahertz (THz) frequencies, with the aid of nanoscale features in the resonators. This structure is polarization‐independent and allows tuning of the THz resonant frequency without affecting the NIR response.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.201901658</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>dual‐region ; Electromagnetic radiation ; Frequency ranges ; Materials science ; meander metamaterial ; Metamaterials ; Optics ; polarization‐independence ; Resonant frequencies ; Resonators ; Terahertz frequencies</subject><ispartof>Advanced optical materials, 2020-04, Vol.8 (7), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-35ecf21485b4b51d33fd5ad71f94661f2ee87b1c77f614031f2b494fda34fb3</citedby><cites>FETCH-LOGICAL-c3178-35ecf21485b4b51d33fd5ad71f94661f2ee87b1c77f614031f2b494fda34fb3</cites><orcidid>0000-0001-6857-4914 ; 0000-0002-5440-9317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.201901658$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.201901658$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Manjunath, Shridhar</creatorcontrib><creatorcontrib>Liu, Mingkai</creatorcontrib><creatorcontrib>Raj, Vidur</creatorcontrib><creatorcontrib>Aoni, Rifat A.</creatorcontrib><creatorcontrib>Powell, David A.</creatorcontrib><creatorcontrib>Shadrivov, Ilya V.</creatorcontrib><creatorcontrib>Rahmani, Mohsen</creatorcontrib><title>Dual‐Region Resonant Meander Metamaterial</title><title>Advanced optical materials</title><description>Metamaterials are engineered structures designed to interact with electromagnetic radiation, whereby the frequency range in which metamaterials respond depends on their dimensions. In this paper, it is demonstrated that a metamaterial can be functional in more than one frequency region. An advanced metamaterial is demonstrated that can interact with both terahertz (THz) and near‐infrared (NIR) frequencies, concurrently. This work exploits meander line resonators with nanoscale linewidth distributed over microscale areas, and experimentally demonstrates that such a metamaterial can simultaneously interact with NIR and THz waves. The engineered metamaterial acts as a plasmonic grating in the NIR range and simultaneously acts as an array of electric resonators in the THz range. Moreover, the performance of the engineered metamaterial is polarization‐independent in both wavelength regions. Finally, a unique feature of the proposed metamaterial is that it enables resonant frequency tuning in the THz region without affecting the NIR response. All these novel advantages of dual‐band meander metamaterial make it an ideal alternative for cutting‐edge applications such as bi‐functional sensing, imaging, filtering, modulation, and absorption. The common understanding in the scientific community is that a given metamaterial operates within a particular frequency range determined by its dimensions. The advanced metamaterial structure can simultaneously interact with near‐infrared (NIR) and terahertz (THz) frequencies, with the aid of nanoscale features in the resonators. This structure is polarization‐independent and allows tuning of the THz resonant frequency without affecting the NIR response.</description><subject>dual‐region</subject><subject>Electromagnetic radiation</subject><subject>Frequency ranges</subject><subject>Materials science</subject><subject>meander metamaterial</subject><subject>Metamaterials</subject><subject>Optics</subject><subject>polarization‐independence</subject><subject>Resonant frequencies</subject><subject>Resonators</subject><subject>Terahertz frequencies</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KAzEQxoMoWGqvngseZddMkt1sjqX1H7QUqveQ3SSyZXdTky3Sm4_gM_okpqyoNy_zzQy_bwY-hC4Bp4AxuVHatSnBIDDkWXGCRgRElgDmcPqnP0eTELYY4zhQwfgIXS_2qvl8_9iYl9p1040JrlNdP10Z1Wnjo_aqVb3xtWou0JlVTTCTbx2jp7vb5_lDslzfP85ny6SiwIuEZqayBFiRlazMQFNqdaY0BytYnoMlxhS8hIpzmwPDNG5KJpjVijJb0jG6Gq7uvHvdm9DLrdv7Lj6UhBY5QKw4UulAVd6F4I2VO1-3yh8kYHlMRB4TkT-JRIMYDG91Yw7_0HK2WK9-vV_bnWQZ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Manjunath, Shridhar</creator><creator>Liu, Mingkai</creator><creator>Raj, Vidur</creator><creator>Aoni, Rifat A.</creator><creator>Powell, David A.</creator><creator>Shadrivov, Ilya V.</creator><creator>Rahmani, Mohsen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6857-4914</orcidid><orcidid>https://orcid.org/0000-0002-5440-9317</orcidid></search><sort><creationdate>20200401</creationdate><title>Dual‐Region Resonant Meander Metamaterial</title><author>Manjunath, Shridhar ; Liu, Mingkai ; Raj, Vidur ; Aoni, Rifat A. ; Powell, David A. ; Shadrivov, Ilya V. ; Rahmani, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-35ecf21485b4b51d33fd5ad71f94661f2ee87b1c77f614031f2b494fda34fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>dual‐region</topic><topic>Electromagnetic radiation</topic><topic>Frequency ranges</topic><topic>Materials science</topic><topic>meander metamaterial</topic><topic>Metamaterials</topic><topic>Optics</topic><topic>polarization‐independence</topic><topic>Resonant frequencies</topic><topic>Resonators</topic><topic>Terahertz frequencies</topic><toplevel>online_resources</toplevel><creatorcontrib>Manjunath, Shridhar</creatorcontrib><creatorcontrib>Liu, Mingkai</creatorcontrib><creatorcontrib>Raj, Vidur</creatorcontrib><creatorcontrib>Aoni, Rifat A.</creatorcontrib><creatorcontrib>Powell, David A.</creatorcontrib><creatorcontrib>Shadrivov, Ilya V.</creatorcontrib><creatorcontrib>Rahmani, Mohsen</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manjunath, Shridhar</au><au>Liu, Mingkai</au><au>Raj, Vidur</au><au>Aoni, Rifat A.</au><au>Powell, David A.</au><au>Shadrivov, Ilya V.</au><au>Rahmani, Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual‐Region Resonant Meander Metamaterial</atitle><jtitle>Advanced optical materials</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>8</volume><issue>7</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Metamaterials are engineered structures designed to interact with electromagnetic radiation, whereby the frequency range in which metamaterials respond depends on their dimensions. In this paper, it is demonstrated that a metamaterial can be functional in more than one frequency region. An advanced metamaterial is demonstrated that can interact with both terahertz (THz) and near‐infrared (NIR) frequencies, concurrently. This work exploits meander line resonators with nanoscale linewidth distributed over microscale areas, and experimentally demonstrates that such a metamaterial can simultaneously interact with NIR and THz waves. The engineered metamaterial acts as a plasmonic grating in the NIR range and simultaneously acts as an array of electric resonators in the THz range. Moreover, the performance of the engineered metamaterial is polarization‐independent in both wavelength regions. Finally, a unique feature of the proposed metamaterial is that it enables resonant frequency tuning in the THz region without affecting the NIR response. All these novel advantages of dual‐band meander metamaterial make it an ideal alternative for cutting‐edge applications such as bi‐functional sensing, imaging, filtering, modulation, and absorption. The common understanding in the scientific community is that a given metamaterial operates within a particular frequency range determined by its dimensions. The advanced metamaterial structure can simultaneously interact with near‐infrared (NIR) and terahertz (THz) frequencies, with the aid of nanoscale features in the resonators. This structure is polarization‐independent and allows tuning of the THz resonant frequency without affecting the NIR response.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.201901658</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6857-4914</orcidid><orcidid>https://orcid.org/0000-0002-5440-9317</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2020-04, Vol.8 (7), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2386112380
source Wiley Online Library Journals Frontfile Complete
subjects dual‐region
Electromagnetic radiation
Frequency ranges
Materials science
meander metamaterial
Metamaterials
Optics
polarization‐independence
Resonant frequencies
Resonators
Terahertz frequencies
title Dual‐Region Resonant Meander Metamaterial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%E2%80%90Region%20Resonant%20Meander%20Metamaterial&rft.jtitle=Advanced%20optical%20materials&rft.au=Manjunath,%20Shridhar&rft.date=2020-04-01&rft.volume=8&rft.issue=7&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.201901658&rft_dat=%3Cproquest_cross%3E2386112380%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386112380&rft_id=info:pmid/&rfr_iscdi=true