Dual‐Region Resonant Meander Metamaterial
Metamaterials are engineered structures designed to interact with electromagnetic radiation, whereby the frequency range in which metamaterials respond depends on their dimensions. In this paper, it is demonstrated that a metamaterial can be functional in more than one frequency region. An advanced...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2020-04, Vol.8 (7), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metamaterials are engineered structures designed to interact with electromagnetic radiation, whereby the frequency range in which metamaterials respond depends on their dimensions. In this paper, it is demonstrated that a metamaterial can be functional in more than one frequency region. An advanced metamaterial is demonstrated that can interact with both terahertz (THz) and near‐infrared (NIR) frequencies, concurrently. This work exploits meander line resonators with nanoscale linewidth distributed over microscale areas, and experimentally demonstrates that such a metamaterial can simultaneously interact with NIR and THz waves. The engineered metamaterial acts as a plasmonic grating in the NIR range and simultaneously acts as an array of electric resonators in the THz range. Moreover, the performance of the engineered metamaterial is polarization‐independent in both wavelength regions. Finally, a unique feature of the proposed metamaterial is that it enables resonant frequency tuning in the THz region without affecting the NIR response. All these novel advantages of dual‐band meander metamaterial make it an ideal alternative for cutting‐edge applications such as bi‐functional sensing, imaging, filtering, modulation, and absorption.
The common understanding in the scientific community is that a given metamaterial operates within a particular frequency range determined by its dimensions. The advanced metamaterial structure can simultaneously interact with near‐infrared (NIR) and terahertz (THz) frequencies, with the aid of nanoscale features in the resonators. This structure is polarization‐independent and allows tuning of the THz resonant frequency without affecting the NIR response. |
---|---|
ISSN: | 2195-1071 2195-1071 |
DOI: | 10.1002/adom.201901658 |