Mining Activities and the Chemical Composition of R. Modonkul, Transbaikalia

The Dzhidinsky orefield is located in the Zakamensky district of Buryatia. It is characterized by a high concentration of mineralization in a small area. The ores of the Dzhidinsky economic deposits are complex. This ore field includes Pervomaiskoye Mo, Kholtosonskoe W, and Inkurskoe W deposits. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2020-04, Vol.12 (4), p.979
Hauptverfasser: Khazheeva, Zinaida Ivanovna, Plyusnin, Aleksey Maksimovich, Smirnova, Olga Konstantinovna, Peryazeva, Elena Georgievna, Zhambalova, Dashima Ivanovna, Doroshkevich, Svetlana Gennadievna, Dabaeva, Viktoriya Valerievna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Dzhidinsky orefield is located in the Zakamensky district of Buryatia. It is characterized by a high concentration of mineralization in a small area. The ores of the Dzhidinsky economic deposits are complex. This ore field includes Pervomaiskoye Mo, Kholtosonskoe W, and Inkurskoe W deposits. The catchment basin of the river Modonkul is located in the Dzhidinsky orefield. Mineral resource industry waste is a real threat to the city Zakamensk. Currently, the waste of deposits is located at the floodplain terrace and the watershed of the river Modonkul. In this work, the impact of the drainage mine and tributary Inkur on the formation chemical composition of the river Modonkul is studied. The 80 samples of water and suspended matter were taken from a surface of 0–0.5 m on seven sites. Physical and chemical parameters were measured at the sampling sites, and chemical composition was analyzed in the laboratory. In the natural background of the river, the major cations are, in decreasing order, Ca2+ > Mg2+ > Na+ + K+, and major anions are, also in decreasing order, HCO3− > SO42− > Cl−. Along the river, the chemical type of water changes from bicarbonate to sulfate across the sulfate-bicarbonate or bicarbonate-sulfate class and from calcium-magnesium across sodium-calcium-magnesium reverse calcium-magnesium group. Total dissolved solids (TDS) increase by a factor of 4.0–4.7 between the upper and mouth of the river. The dissolved and suspended loads were studied in the mixing zone of acid mine and river water. The different hydrochemistry characteristics may result from Fe, Al, and Mn hydroxide precipitation. The pH values and dissolved oxygen cycles could change the uptake of heavy metals on suspended iron and manganese oxides, and the mechanism of removing it in water. River particulates have the potential of regulating heavy metal inputs to aquatic systems from pollution. The ore elements or the heavy metals are removed from the water in two ways: by the runoff of Modonkul and the sedimentation of suspended material at the bottom. The inflow of mine water into the Modonkul river leads to the rare earth elements (REEs) composition with negative cerium and positive europium anomalies.
ISSN:2073-4441
2073-4441
DOI:10.3390/w12040979