BIOLOGICAL SOLUBILIZATION OF SOME METALS BY A NEW ACIDITHIOBACILLUS SPECIES ISOLATED FROM A MODERATE SULFUR HOT SPRING
A chemolithotrophic bacterium was isolated from sulfur hot spring. According to phenotypic traits and 16-23S rDNA intergenic spacer region analysis, the isolate was identified and named as Acidithiobacillus sp. MR39, which was a gram-negative, rod- shape and non-motile bacterium. The strain was able...
Gespeichert in:
Veröffentlicht in: | Journal of microbiology, biotechnology and food sciences biotechnology and food sciences, 2019-12, Vol.9 (3), p.585-589 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A chemolithotrophic bacterium was isolated from sulfur hot spring. According to phenotypic traits and 16-23S rDNA intergenic spacer region analysis, the isolate was identified and named as Acidithiobacillus sp. MR39, which was a gram-negative, rod- shape and non-motile bacterium. The strain was able to grow in a synthetic liquid medium supplemented with the mineral ore as the source of energy. The optimum conditions were found to be within initial pH range of 2.0-2.5, at 34±1˚C and with shaking at 120 rpm. The bacterium had a remarkable potential for mineralization of 88% iron, 75% copper, 59% zinc, 59% nickel and 40% cobalt upon their growth in the liquid media. After adapting the bacterial cells to copper ions in 100 mM for 5-day incubation, biorecovery of Cu increased about 10% comparing to unadapted cells that are able to dissolve approximately 15% of total cu of mineral concentrate. Considering the finding in this study, the strain MR39 offers a great prospect for in situ extraction of metals from various ores along with other indigenous bacteria that can grow under ambient conditions. |
---|---|
ISSN: | 1338-5178 1338-5178 |
DOI: | 10.15414/jmbfs.2019/20.9.3.585-589 |