Lowness for isomorphism, countable ideals, and computable traceability

We show that every countable ideal of degrees that are low for isomorphism is contained in a principal ideal of degrees that are low for isomorphism by adapting an exact pair construction. We further show that within the hyperimmune free degrees, lowness for isomorphism is entirely independent of co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical logic quarterly 2020-03, Vol.66 (1), p.104-114
Hauptverfasser: Franklin, Johanna N. Y., Solomon, Reed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that every countable ideal of degrees that are low for isomorphism is contained in a principal ideal of degrees that are low for isomorphism by adapting an exact pair construction. We further show that within the hyperimmune free degrees, lowness for isomorphism is entirely independent of computable traceability.
ISSN:0942-5616
1521-3870
DOI:10.1002/malq.201900066