On weak square, approachability, the tree property, and failures of SCH in a choiceless context
We show that the consistency of the theories ZF+¬ACω+ “GCH holds below ℵω” + “there is an injection f:ℵω+2→℘(ℵω)” + “both □ℵω∗ and APℵω fail” and ZF+¬ACω + “GCH holds below ℵω” + “there is an injection f:ℵω+2→℘(ℵω)” + “ℵω+1 satisfies the tree property” follow from the appropriate supercompactness hy...
Gespeichert in:
Veröffentlicht in: | Mathematical logic quarterly 2020-03, Vol.66 (1), p.115-120 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the consistency of the theories ZF+¬ACω+ “GCH holds below ℵω” + “there is an injection f:ℵω+2→℘(ℵω)” + “both □ℵω∗ and APℵω fail” and ZF+¬ACω + “GCH holds below ℵω” + “there is an injection f:ℵω+2→℘(ℵω)” + “ℵω+1 satisfies the tree property” follow from the appropriate supercompactness hypotheses. These provide answers in a choiceless context to certain long‐standing open questions concerning SCH, weak square, approachability, and the tree property. There is nothing special about ℵω+2, and the injection into ℘(ℵω) can be from any ordinal λ (which means that pcf theory can fail badly in the models constructed if λ≥ℵω4). |
---|---|
ISSN: | 0942-5616 1521-3870 |
DOI: | 10.1002/malq.201900022 |