Tendencias en modelos informativos sobre la retención - deserción universitaria

The results obtained indicate that the variables that affect student retention are related to cognitive, social and organizational factors and that the tendency is to develop predictive- prescriptive models for the study of these concepts. [...]it is proposed to develop predictive models based on st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RISTI : Revista Ibérica de Sistemas e Tecnologias de Informação 2020-02 (E26), p.55-68
Hauptverfasser: Guerra, Laura, Rivero, Dulce, Díaz, Eleazar, Arciniegas, Stalin
Format: Artikel
Sprache:spa
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The results obtained indicate that the variables that affect student retention are related to cognitive, social and organizational factors and that the tendency is to develop predictive- prescriptive models for the study of these concepts. [...]it is proposed to develop predictive models based on statistics and learning models to improve student retention and dropout rates. Keywords: student retention; data analytics; student dropout; artificial intelligence. 1. La metodología utilizada estuvo basada en the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (Moher, Liberati, Tetzlaff, Altman, & The PRISMA Group, 2010, nombrados por los autores).
ISSN:1646-9895