Tendencias en modelos informativos sobre la retención - deserción universitaria
The results obtained indicate that the variables that affect student retention are related to cognitive, social and organizational factors and that the tendency is to develop predictive- prescriptive models for the study of these concepts. [...]it is proposed to develop predictive models based on st...
Gespeichert in:
Veröffentlicht in: | RISTI : Revista Ibérica de Sistemas e Tecnologias de Informação 2020-02 (E26), p.55-68 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | spa |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The results obtained indicate that the variables that affect student retention are related to cognitive, social and organizational factors and that the tendency is to develop predictive- prescriptive models for the study of these concepts. [...]it is proposed to develop predictive models based on statistics and learning models to improve student retention and dropout rates. Keywords: student retention; data analytics; student dropout; artificial intelligence. 1. La metodología utilizada estuvo basada en the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (Moher, Liberati, Tetzlaff, Altman, & The PRISMA Group, 2010, nombrados por los autores). |
---|---|
ISSN: | 1646-9895 |