On values of the Riemann zeta function at positive integers

We give new proofs of some known results on the values of the Riemann zeta function at positive integers and obtain some new theorems related to these values. Considering even zeta values as ζ(2 n ) =  η n π 2 n , we obtain the generating functions of the sequences η n and (−1) n η n . Using the Rie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lithuanian mathematical journal 2020, Vol.60 (1), p.9-24
Hauptverfasser: Dil, Ayhan, Boyadzhiev, Khristo N., Aliev, Ilham A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 1
container_start_page 9
container_title Lithuanian mathematical journal
container_volume 60
creator Dil, Ayhan
Boyadzhiev, Khristo N.
Aliev, Ilham A.
description We give new proofs of some known results on the values of the Riemann zeta function at positive integers and obtain some new theorems related to these values. Considering even zeta values as ζ(2 n ) =  η n π 2 n , we obtain the generating functions of the sequences η n and (−1) n η n . Using the Riemann–Lebesgue lemma, we give recurrence relations for ζ(2 n ) and ζ(2 n  + 1). Furthermore, we prove some series equations for ∑ k = 1 ∞ − 1 k − 1 ζ p + k / k .
doi_str_mv 10.1007/s10986-019-09456-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2385346876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385346876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f749af8e694f37077d200fd39d1a1f1f16e4bbf0adcd2481b279df0ca2b515f33</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOnqSzOSCKyneoFAQXYfMTKJT2kxNMgV9eqMjuJOzOJvvP5cPoXMKlxRAXiUKWgkCVBPQVS2IPEAzWktOlGL1IZoBF5xQIdkxOklpDVB4CjN0vQp4bzejS3jwOL85_NS7rQ0Bf7pssR9Dm_shYJvxbkh97vcO9yG7VxfTKTrydpPc2W-fo5e72-fFA1mu7h8XN0vScqoz8bLS1isndOW5BCk7BuA7rjtqqS8lXNU0HmzXdqxStGFSdx5ay5qa1p7zObqY5u7i8F4uzWY9jDGUlYZxVfNKKCkKxSaqjUNK0Xmzi_3Wxg9DwXxLMpMkUySZH0lGlhCfQqnAoTz1N_qf1BeMRWm8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385346876</pqid></control><display><type>article</type><title>On values of the Riemann zeta function at positive integers</title><source>Springer Nature - Complete Springer Journals</source><creator>Dil, Ayhan ; Boyadzhiev, Khristo N. ; Aliev, Ilham A.</creator><creatorcontrib>Dil, Ayhan ; Boyadzhiev, Khristo N. ; Aliev, Ilham A.</creatorcontrib><description>We give new proofs of some known results on the values of the Riemann zeta function at positive integers and obtain some new theorems related to these values. Considering even zeta values as ζ(2 n ) =  η n π 2 n , we obtain the generating functions of the sequences η n and (−1) n η n . Using the Riemann–Lebesgue lemma, we give recurrence relations for ζ(2 n ) and ζ(2 n  + 1). Furthermore, we prove some series equations for ∑ k = 1 ∞ − 1 k − 1 ζ p + k / k .</description><identifier>ISSN: 0363-1672</identifier><identifier>EISSN: 1573-8825</identifier><identifier>DOI: 10.1007/s10986-019-09456-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Actuarial Sciences ; Integers ; Mathematics ; Mathematics and Statistics ; Number Theory ; Numbers ; Ordinary Differential Equations ; Probability Theory and Stochastic Processes ; Sequences</subject><ispartof>Lithuanian mathematical journal, 2020, Vol.60 (1), p.9-24</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f749af8e694f37077d200fd39d1a1f1f16e4bbf0adcd2481b279df0ca2b515f33</citedby><cites>FETCH-LOGICAL-c319t-f749af8e694f37077d200fd39d1a1f1f16e4bbf0adcd2481b279df0ca2b515f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10986-019-09456-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10986-019-09456-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Dil, Ayhan</creatorcontrib><creatorcontrib>Boyadzhiev, Khristo N.</creatorcontrib><creatorcontrib>Aliev, Ilham A.</creatorcontrib><title>On values of the Riemann zeta function at positive integers</title><title>Lithuanian mathematical journal</title><addtitle>Lith Math J</addtitle><description>We give new proofs of some known results on the values of the Riemann zeta function at positive integers and obtain some new theorems related to these values. Considering even zeta values as ζ(2 n ) =  η n π 2 n , we obtain the generating functions of the sequences η n and (−1) n η n . Using the Riemann–Lebesgue lemma, we give recurrence relations for ζ(2 n ) and ζ(2 n  + 1). Furthermore, we prove some series equations for ∑ k = 1 ∞ − 1 k − 1 ζ p + k / k .</description><subject>Actuarial Sciences</subject><subject>Integers</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Numbers</subject><subject>Ordinary Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Sequences</subject><issn>0363-1672</issn><issn>1573-8825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOnqSzOSCKyneoFAQXYfMTKJT2kxNMgV9eqMjuJOzOJvvP5cPoXMKlxRAXiUKWgkCVBPQVS2IPEAzWktOlGL1IZoBF5xQIdkxOklpDVB4CjN0vQp4bzejS3jwOL85_NS7rQ0Bf7pssR9Dm_shYJvxbkh97vcO9yG7VxfTKTrydpPc2W-fo5e72-fFA1mu7h8XN0vScqoz8bLS1isndOW5BCk7BuA7rjtqqS8lXNU0HmzXdqxStGFSdx5ay5qa1p7zObqY5u7i8F4uzWY9jDGUlYZxVfNKKCkKxSaqjUNK0Xmzi_3Wxg9DwXxLMpMkUySZH0lGlhCfQqnAoTz1N_qf1BeMRWm8</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Dil, Ayhan</creator><creator>Boyadzhiev, Khristo N.</creator><creator>Aliev, Ilham A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2020</creationdate><title>On values of the Riemann zeta function at positive integers</title><author>Dil, Ayhan ; Boyadzhiev, Khristo N. ; Aliev, Ilham A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f749af8e694f37077d200fd39d1a1f1f16e4bbf0adcd2481b279df0ca2b515f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuarial Sciences</topic><topic>Integers</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Numbers</topic><topic>Ordinary Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dil, Ayhan</creatorcontrib><creatorcontrib>Boyadzhiev, Khristo N.</creatorcontrib><creatorcontrib>Aliev, Ilham A.</creatorcontrib><collection>CrossRef</collection><jtitle>Lithuanian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dil, Ayhan</au><au>Boyadzhiev, Khristo N.</au><au>Aliev, Ilham A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On values of the Riemann zeta function at positive integers</atitle><jtitle>Lithuanian mathematical journal</jtitle><stitle>Lith Math J</stitle><date>2020</date><risdate>2020</risdate><volume>60</volume><issue>1</issue><spage>9</spage><epage>24</epage><pages>9-24</pages><issn>0363-1672</issn><eissn>1573-8825</eissn><abstract>We give new proofs of some known results on the values of the Riemann zeta function at positive integers and obtain some new theorems related to these values. Considering even zeta values as ζ(2 n ) =  η n π 2 n , we obtain the generating functions of the sequences η n and (−1) n η n . Using the Riemann–Lebesgue lemma, we give recurrence relations for ζ(2 n ) and ζ(2 n  + 1). Furthermore, we prove some series equations for ∑ k = 1 ∞ − 1 k − 1 ζ p + k / k .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10986-019-09456-7</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-1672
ispartof Lithuanian mathematical journal, 2020, Vol.60 (1), p.9-24
issn 0363-1672
1573-8825
language eng
recordid cdi_proquest_journals_2385346876
source Springer Nature - Complete Springer Journals
subjects Actuarial Sciences
Integers
Mathematics
Mathematics and Statistics
Number Theory
Numbers
Ordinary Differential Equations
Probability Theory and Stochastic Processes
Sequences
title On values of the Riemann zeta function at positive integers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A42%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20values%20of%20the%20Riemann%20zeta%20function%20at%20positive%20integers&rft.jtitle=Lithuanian%20mathematical%20journal&rft.au=Dil,%20Ayhan&rft.date=2020&rft.volume=60&rft.issue=1&rft.spage=9&rft.epage=24&rft.pages=9-24&rft.issn=0363-1672&rft.eissn=1573-8825&rft_id=info:doi/10.1007/s10986-019-09456-7&rft_dat=%3Cproquest_cross%3E2385346876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2385346876&rft_id=info:pmid/&rfr_iscdi=true