On values of the Riemann zeta function at positive integers

We give new proofs of some known results on the values of the Riemann zeta function at positive integers and obtain some new theorems related to these values. Considering even zeta values as ζ(2 n ) =  η n π 2 n , we obtain the generating functions of the sequences η n and (−1) n η n . Using the Rie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lithuanian mathematical journal 2020, Vol.60 (1), p.9-24
Hauptverfasser: Dil, Ayhan, Boyadzhiev, Khristo N., Aliev, Ilham A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give new proofs of some known results on the values of the Riemann zeta function at positive integers and obtain some new theorems related to these values. Considering even zeta values as ζ(2 n ) =  η n π 2 n , we obtain the generating functions of the sequences η n and (−1) n η n . Using the Riemann–Lebesgue lemma, we give recurrence relations for ζ(2 n ) and ζ(2 n  + 1). Furthermore, we prove some series equations for ∑ k = 1 ∞ − 1 k − 1 ζ p + k / k .
ISSN:0363-1672
1573-8825
DOI:10.1007/s10986-019-09456-7