On values of the Riemann zeta function at positive integers
We give new proofs of some known results on the values of the Riemann zeta function at positive integers and obtain some new theorems related to these values. Considering even zeta values as ζ(2 n ) = η n π 2 n , we obtain the generating functions of the sequences η n and (−1) n η n . Using the Rie...
Gespeichert in:
Veröffentlicht in: | Lithuanian mathematical journal 2020, Vol.60 (1), p.9-24 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give new proofs of some known results on the values of the Riemann zeta function at positive integers and obtain some new theorems related to these values. Considering even zeta values as ζ(2
n
) =
η
n
π
2
n
, we obtain the generating functions of the sequences
η
n
and (−1)
n
η
n
. Using the Riemann–Lebesgue lemma, we give recurrence relations for ζ(2
n
) and ζ(2
n
+ 1). Furthermore, we prove some series equations for
∑
k
=
1
∞
−
1
k
−
1
ζ
p
+
k
/
k
. |
---|---|
ISSN: | 0363-1672 1573-8825 |
DOI: | 10.1007/s10986-019-09456-7 |