Hamiltonian Formalism for Bose Excitations in a Plasma with a Non-Abelian Interaction
We have developed the Hamiltonian theory for collective longitudinally polarized colorless excitations (plasmons) in a high-temperature gluon plasma using the general formalism for constructing the wave theory in nonlinear media with dispersion, which was developed by V.E. Zakharov. In this approach...
Gespeichert in:
Veröffentlicht in: | Journal of experimental and theoretical physics 2020-02, Vol.130 (2), p.274-286 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 286 |
---|---|
container_issue | 2 |
container_start_page | 274 |
container_title | Journal of experimental and theoretical physics |
container_volume | 130 |
creator | Markov, Yu. A. Markova, M. A. Markov, N. Yu Gitman, D. M. |
description | We have developed the Hamiltonian theory for collective longitudinally polarized colorless excitations (plasmons) in a high-temperature gluon plasma using the general formalism for constructing the wave theory in nonlinear media with dispersion, which was developed by V.E. Zakharov. In this approach, we have explicitly obtained a special canonical transformation that makes it possible to simplify the Hamiltonian of interaction of soft gluon excitations and, hence, to derive a new effective Hamiltonian. The approach developed here is used for constructing a Boltzmann-type kinetic equation describing elastic scattering of collective longitudinally polarized excitations in a gluon plasma as well as the effect of the so-called nonlinear Landau damping. We have performed detailed comparison of the effective amplitude of the plasmon–plasmon interaction, which is determined using the classical Hamilton theory, with the corresponding matrix element calculated in the framework of high-temperature quantum chromodynamics; this has enabled us to determine applicability limits for the purely classical approach described in this study. |
doi_str_mv | 10.1134/S1063776120010082 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2385341240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A619241362</galeid><sourcerecordid>A619241362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-3df8adf3b928602402d88387317f930c31d2a334de321b0b35428df4150f33683</originalsourceid><addsrcrecordid>eNp1kVFLwzAQgIsoOKc_wLeCTz50XnJdlz7OsbmBqDj3XLI2mRltMpMM5783pYIMkTwkd_m-u4OLomsCA0IwvVsSyHA0yggFIACMnkQ9Ajkk2RDy0_adYdL-n0cXzm2hRSDvRas5b1TtjVZcxzNjG14r18TS2PjeOBFPD6Xy3CujXax0zOOXmruGx5_Kv4foyehkvBZ1ay-0F5aXLXsZnUleO3H1c_ej1Wz6Npknj88Pi8n4MSmR5T7BSjJeSVznlGVAU6AVY8hGSEYyRyiRVJQjppVAStawxmFKWSVTMgSJmDHsRzdd3Z01H3vhfLE1e6tDy4IiG2JKQtFADTpqw2tRKC2ND3OGU4lGlUYLqUJ-nJGcpgQzGoTbIyEwXhz8hu-dKxbL12OWdGxpjXNWyGJnVcPtV0GgaFdT_FlNcGjnuMDqjbC_Y_8vfQO4koxO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385341240</pqid></control><display><type>article</type><title>Hamiltonian Formalism for Bose Excitations in a Plasma with a Non-Abelian Interaction</title><source>Springer Nature - Complete Springer Journals</source><creator>Markov, Yu. A. ; Markova, M. A. ; Markov, N. Yu ; Gitman, D. M.</creator><creatorcontrib>Markov, Yu. A. ; Markova, M. A. ; Markov, N. Yu ; Gitman, D. M.</creatorcontrib><description>We have developed the Hamiltonian theory for collective longitudinally polarized colorless excitations (plasmons) in a high-temperature gluon plasma using the general formalism for constructing the wave theory in nonlinear media with dispersion, which was developed by V.E. Zakharov. In this approach, we have explicitly obtained a special canonical transformation that makes it possible to simplify the Hamiltonian of interaction of soft gluon excitations and, hence, to derive a new effective Hamiltonian. The approach developed here is used for constructing a Boltzmann-type kinetic equation describing elastic scattering of collective longitudinally polarized excitations in a gluon plasma as well as the effect of the so-called nonlinear Landau damping. We have performed detailed comparison of the effective amplitude of the plasmon–plasmon interaction, which is determined using the classical Hamilton theory, with the corresponding matrix element calculated in the framework of high-temperature quantum chromodynamics; this has enabled us to determine applicability limits for the purely classical approach described in this study.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776120010082</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical and Quantum Gravitation ; Elastic scattering ; Elementary Particles ; Excitation ; Formalism ; Gluons ; High temperature ; Kinetic equations ; Landau damping ; Nonlinear ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Plasmons ; Quantum chromodynamics ; Quantum Field Theory ; Relativity Theory ; Soft Matter Physics ; Solid State Physics ; Statistical</subject><ispartof>Journal of experimental and theoretical physics, 2020-02, Vol.130 (2), p.274-286</ispartof><rights>Pleiades Publishing, Inc. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Pleiades Publishing, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-3df8adf3b928602402d88387317f930c31d2a334de321b0b35428df4150f33683</citedby><cites>FETCH-LOGICAL-c389t-3df8adf3b928602402d88387317f930c31d2a334de321b0b35428df4150f33683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063776120010082$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063776120010082$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Markov, Yu. A.</creatorcontrib><creatorcontrib>Markova, M. A.</creatorcontrib><creatorcontrib>Markov, N. Yu</creatorcontrib><creatorcontrib>Gitman, D. M.</creatorcontrib><title>Hamiltonian Formalism for Bose Excitations in a Plasma with a Non-Abelian Interaction</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>We have developed the Hamiltonian theory for collective longitudinally polarized colorless excitations (plasmons) in a high-temperature gluon plasma using the general formalism for constructing the wave theory in nonlinear media with dispersion, which was developed by V.E. Zakharov. In this approach, we have explicitly obtained a special canonical transformation that makes it possible to simplify the Hamiltonian of interaction of soft gluon excitations and, hence, to derive a new effective Hamiltonian. The approach developed here is used for constructing a Boltzmann-type kinetic equation describing elastic scattering of collective longitudinally polarized excitations in a gluon plasma as well as the effect of the so-called nonlinear Landau damping. We have performed detailed comparison of the effective amplitude of the plasmon–plasmon interaction, which is determined using the classical Hamilton theory, with the corresponding matrix element calculated in the framework of high-temperature quantum chromodynamics; this has enabled us to determine applicability limits for the purely classical approach described in this study.</description><subject>Classical and Quantum Gravitation</subject><subject>Elastic scattering</subject><subject>Elementary Particles</subject><subject>Excitation</subject><subject>Formalism</subject><subject>Gluons</subject><subject>High temperature</subject><subject>Kinetic equations</subject><subject>Landau damping</subject><subject>Nonlinear</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasmons</subject><subject>Quantum chromodynamics</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>Soft Matter Physics</subject><subject>Solid State Physics</subject><subject>Statistical</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kVFLwzAQgIsoOKc_wLeCTz50XnJdlz7OsbmBqDj3XLI2mRltMpMM5783pYIMkTwkd_m-u4OLomsCA0IwvVsSyHA0yggFIACMnkQ9Ajkk2RDy0_adYdL-n0cXzm2hRSDvRas5b1TtjVZcxzNjG14r18TS2PjeOBFPD6Xy3CujXax0zOOXmruGx5_Kv4foyehkvBZ1ay-0F5aXLXsZnUleO3H1c_ej1Wz6Npknj88Pi8n4MSmR5T7BSjJeSVznlGVAU6AVY8hGSEYyRyiRVJQjppVAStawxmFKWSVTMgSJmDHsRzdd3Z01H3vhfLE1e6tDy4IiG2JKQtFADTpqw2tRKC2ND3OGU4lGlUYLqUJ-nJGcpgQzGoTbIyEwXhz8hu-dKxbL12OWdGxpjXNWyGJnVcPtV0GgaFdT_FlNcGjnuMDqjbC_Y_8vfQO4koxO</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Markov, Yu. A.</creator><creator>Markova, M. A.</creator><creator>Markov, N. Yu</creator><creator>Gitman, D. M.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200201</creationdate><title>Hamiltonian Formalism for Bose Excitations in a Plasma with a Non-Abelian Interaction</title><author>Markov, Yu. A. ; Markova, M. A. ; Markov, N. Yu ; Gitman, D. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-3df8adf3b928602402d88387317f930c31d2a334de321b0b35428df4150f33683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Elastic scattering</topic><topic>Elementary Particles</topic><topic>Excitation</topic><topic>Formalism</topic><topic>Gluons</topic><topic>High temperature</topic><topic>Kinetic equations</topic><topic>Landau damping</topic><topic>Nonlinear</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasmons</topic><topic>Quantum chromodynamics</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>Soft Matter Physics</topic><topic>Solid State Physics</topic><topic>Statistical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markov, Yu. A.</creatorcontrib><creatorcontrib>Markova, M. A.</creatorcontrib><creatorcontrib>Markov, N. Yu</creatorcontrib><creatorcontrib>Gitman, D. M.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markov, Yu. A.</au><au>Markova, M. A.</au><au>Markov, N. Yu</au><au>Gitman, D. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hamiltonian Formalism for Bose Excitations in a Plasma with a Non-Abelian Interaction</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>130</volume><issue>2</issue><spage>274</spage><epage>286</epage><pages>274-286</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>We have developed the Hamiltonian theory for collective longitudinally polarized colorless excitations (plasmons) in a high-temperature gluon plasma using the general formalism for constructing the wave theory in nonlinear media with dispersion, which was developed by V.E. Zakharov. In this approach, we have explicitly obtained a special canonical transformation that makes it possible to simplify the Hamiltonian of interaction of soft gluon excitations and, hence, to derive a new effective Hamiltonian. The approach developed here is used for constructing a Boltzmann-type kinetic equation describing elastic scattering of collective longitudinally polarized excitations in a gluon plasma as well as the effect of the so-called nonlinear Landau damping. We have performed detailed comparison of the effective amplitude of the plasmon–plasmon interaction, which is determined using the classical Hamilton theory, with the corresponding matrix element calculated in the framework of high-temperature quantum chromodynamics; this has enabled us to determine applicability limits for the purely classical approach described in this study.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063776120010082</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7761 |
ispartof | Journal of experimental and theoretical physics, 2020-02, Vol.130 (2), p.274-286 |
issn | 1063-7761 1090-6509 |
language | eng |
recordid | cdi_proquest_journals_2385341240 |
source | Springer Nature - Complete Springer Journals |
subjects | Classical and Quantum Gravitation Elastic scattering Elementary Particles Excitation Formalism Gluons High temperature Kinetic equations Landau damping Nonlinear Particle and Nuclear Physics Physics Physics and Astronomy Plasmons Quantum chromodynamics Quantum Field Theory Relativity Theory Soft Matter Physics Solid State Physics Statistical |
title | Hamiltonian Formalism for Bose Excitations in a Plasma with a Non-Abelian Interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hamiltonian%20Formalism%20for%20Bose%20Excitations%20in%20a%20Plasma%20with%20a%20Non-Abelian%20Interaction&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Markov,%20Yu.%20A.&rft.date=2020-02-01&rft.volume=130&rft.issue=2&rft.spage=274&rft.epage=286&rft.pages=274-286&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776120010082&rft_dat=%3Cgale_proqu%3EA619241362%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2385341240&rft_id=info:pmid/&rft_galeid=A619241362&rfr_iscdi=true |