Hamiltonian Formalism for Bose Excitations in a Plasma with a Non-Abelian Interaction

We have developed the Hamiltonian theory for collective longitudinally polarized colorless excitations (plasmons) in a high-temperature gluon plasma using the general formalism for constructing the wave theory in nonlinear media with dispersion, which was developed by V.E. Zakharov. In this approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental and theoretical physics 2020-02, Vol.130 (2), p.274-286
Hauptverfasser: Markov, Yu. A., Markova, M. A., Markov, N. Yu, Gitman, D. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue 2
container_start_page 274
container_title Journal of experimental and theoretical physics
container_volume 130
creator Markov, Yu. A.
Markova, M. A.
Markov, N. Yu
Gitman, D. M.
description We have developed the Hamiltonian theory for collective longitudinally polarized colorless excitations (plasmons) in a high-temperature gluon plasma using the general formalism for constructing the wave theory in nonlinear media with dispersion, which was developed by V.E. Zakharov. In this approach, we have explicitly obtained a special canonical transformation that makes it possible to simplify the Hamiltonian of interaction of soft gluon excitations and, hence, to derive a new effective Hamiltonian. The approach developed here is used for constructing a Boltzmann-type kinetic equation describing elastic scattering of collective longitudinally polarized excitations in a gluon plasma as well as the effect of the so-called nonlinear Landau damping. We have performed detailed comparison of the effective amplitude of the plasmon–plasmon interaction, which is determined using the classical Hamilton theory, with the corresponding matrix element calculated in the framework of high-temperature quantum chromodynamics; this has enabled us to determine applicability limits for the purely classical approach described in this study.
doi_str_mv 10.1134/S1063776120010082
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2385341240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A619241362</galeid><sourcerecordid>A619241362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-3df8adf3b928602402d88387317f930c31d2a334de321b0b35428df4150f33683</originalsourceid><addsrcrecordid>eNp1kVFLwzAQgIsoOKc_wLeCTz50XnJdlz7OsbmBqDj3XLI2mRltMpMM5783pYIMkTwkd_m-u4OLomsCA0IwvVsSyHA0yggFIACMnkQ9Ajkk2RDy0_adYdL-n0cXzm2hRSDvRas5b1TtjVZcxzNjG14r18TS2PjeOBFPD6Xy3CujXax0zOOXmruGx5_Kv4foyehkvBZ1ay-0F5aXLXsZnUleO3H1c_ej1Wz6Npknj88Pi8n4MSmR5T7BSjJeSVznlGVAU6AVY8hGSEYyRyiRVJQjppVAStawxmFKWSVTMgSJmDHsRzdd3Z01H3vhfLE1e6tDy4IiG2JKQtFADTpqw2tRKC2ND3OGU4lGlUYLqUJ-nJGcpgQzGoTbIyEwXhz8hu-dKxbL12OWdGxpjXNWyGJnVcPtV0GgaFdT_FlNcGjnuMDqjbC_Y_8vfQO4koxO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385341240</pqid></control><display><type>article</type><title>Hamiltonian Formalism for Bose Excitations in a Plasma with a Non-Abelian Interaction</title><source>Springer Nature - Complete Springer Journals</source><creator>Markov, Yu. A. ; Markova, M. A. ; Markov, N. Yu ; Gitman, D. M.</creator><creatorcontrib>Markov, Yu. A. ; Markova, M. A. ; Markov, N. Yu ; Gitman, D. M.</creatorcontrib><description>We have developed the Hamiltonian theory for collective longitudinally polarized colorless excitations (plasmons) in a high-temperature gluon plasma using the general formalism for constructing the wave theory in nonlinear media with dispersion, which was developed by V.E. Zakharov. In this approach, we have explicitly obtained a special canonical transformation that makes it possible to simplify the Hamiltonian of interaction of soft gluon excitations and, hence, to derive a new effective Hamiltonian. The approach developed here is used for constructing a Boltzmann-type kinetic equation describing elastic scattering of collective longitudinally polarized excitations in a gluon plasma as well as the effect of the so-called nonlinear Landau damping. We have performed detailed comparison of the effective amplitude of the plasmon–plasmon interaction, which is determined using the classical Hamilton theory, with the corresponding matrix element calculated in the framework of high-temperature quantum chromodynamics; this has enabled us to determine applicability limits for the purely classical approach described in this study.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776120010082</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical and Quantum Gravitation ; Elastic scattering ; Elementary Particles ; Excitation ; Formalism ; Gluons ; High temperature ; Kinetic equations ; Landau damping ; Nonlinear ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Plasmons ; Quantum chromodynamics ; Quantum Field Theory ; Relativity Theory ; Soft Matter Physics ; Solid State Physics ; Statistical</subject><ispartof>Journal of experimental and theoretical physics, 2020-02, Vol.130 (2), p.274-286</ispartof><rights>Pleiades Publishing, Inc. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Pleiades Publishing, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-3df8adf3b928602402d88387317f930c31d2a334de321b0b35428df4150f33683</citedby><cites>FETCH-LOGICAL-c389t-3df8adf3b928602402d88387317f930c31d2a334de321b0b35428df4150f33683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063776120010082$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063776120010082$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Markov, Yu. A.</creatorcontrib><creatorcontrib>Markova, M. A.</creatorcontrib><creatorcontrib>Markov, N. Yu</creatorcontrib><creatorcontrib>Gitman, D. M.</creatorcontrib><title>Hamiltonian Formalism for Bose Excitations in a Plasma with a Non-Abelian Interaction</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>We have developed the Hamiltonian theory for collective longitudinally polarized colorless excitations (plasmons) in a high-temperature gluon plasma using the general formalism for constructing the wave theory in nonlinear media with dispersion, which was developed by V.E. Zakharov. In this approach, we have explicitly obtained a special canonical transformation that makes it possible to simplify the Hamiltonian of interaction of soft gluon excitations and, hence, to derive a new effective Hamiltonian. The approach developed here is used for constructing a Boltzmann-type kinetic equation describing elastic scattering of collective longitudinally polarized excitations in a gluon plasma as well as the effect of the so-called nonlinear Landau damping. We have performed detailed comparison of the effective amplitude of the plasmon–plasmon interaction, which is determined using the classical Hamilton theory, with the corresponding matrix element calculated in the framework of high-temperature quantum chromodynamics; this has enabled us to determine applicability limits for the purely classical approach described in this study.</description><subject>Classical and Quantum Gravitation</subject><subject>Elastic scattering</subject><subject>Elementary Particles</subject><subject>Excitation</subject><subject>Formalism</subject><subject>Gluons</subject><subject>High temperature</subject><subject>Kinetic equations</subject><subject>Landau damping</subject><subject>Nonlinear</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasmons</subject><subject>Quantum chromodynamics</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>Soft Matter Physics</subject><subject>Solid State Physics</subject><subject>Statistical</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kVFLwzAQgIsoOKc_wLeCTz50XnJdlz7OsbmBqDj3XLI2mRltMpMM5783pYIMkTwkd_m-u4OLomsCA0IwvVsSyHA0yggFIACMnkQ9Ajkk2RDy0_adYdL-n0cXzm2hRSDvRas5b1TtjVZcxzNjG14r18TS2PjeOBFPD6Xy3CujXax0zOOXmruGx5_Kv4foyehkvBZ1ay-0F5aXLXsZnUleO3H1c_ej1Wz6Npknj88Pi8n4MSmR5T7BSjJeSVznlGVAU6AVY8hGSEYyRyiRVJQjppVAStawxmFKWSVTMgSJmDHsRzdd3Z01H3vhfLE1e6tDy4IiG2JKQtFADTpqw2tRKC2ND3OGU4lGlUYLqUJ-nJGcpgQzGoTbIyEwXhz8hu-dKxbL12OWdGxpjXNWyGJnVcPtV0GgaFdT_FlNcGjnuMDqjbC_Y_8vfQO4koxO</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Markov, Yu. A.</creator><creator>Markova, M. A.</creator><creator>Markov, N. Yu</creator><creator>Gitman, D. M.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200201</creationdate><title>Hamiltonian Formalism for Bose Excitations in a Plasma with a Non-Abelian Interaction</title><author>Markov, Yu. A. ; Markova, M. A. ; Markov, N. Yu ; Gitman, D. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-3df8adf3b928602402d88387317f930c31d2a334de321b0b35428df4150f33683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Elastic scattering</topic><topic>Elementary Particles</topic><topic>Excitation</topic><topic>Formalism</topic><topic>Gluons</topic><topic>High temperature</topic><topic>Kinetic equations</topic><topic>Landau damping</topic><topic>Nonlinear</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasmons</topic><topic>Quantum chromodynamics</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>Soft Matter Physics</topic><topic>Solid State Physics</topic><topic>Statistical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markov, Yu. A.</creatorcontrib><creatorcontrib>Markova, M. A.</creatorcontrib><creatorcontrib>Markov, N. Yu</creatorcontrib><creatorcontrib>Gitman, D. M.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markov, Yu. A.</au><au>Markova, M. A.</au><au>Markov, N. Yu</au><au>Gitman, D. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hamiltonian Formalism for Bose Excitations in a Plasma with a Non-Abelian Interaction</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>130</volume><issue>2</issue><spage>274</spage><epage>286</epage><pages>274-286</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>We have developed the Hamiltonian theory for collective longitudinally polarized colorless excitations (plasmons) in a high-temperature gluon plasma using the general formalism for constructing the wave theory in nonlinear media with dispersion, which was developed by V.E. Zakharov. In this approach, we have explicitly obtained a special canonical transformation that makes it possible to simplify the Hamiltonian of interaction of soft gluon excitations and, hence, to derive a new effective Hamiltonian. The approach developed here is used for constructing a Boltzmann-type kinetic equation describing elastic scattering of collective longitudinally polarized excitations in a gluon plasma as well as the effect of the so-called nonlinear Landau damping. We have performed detailed comparison of the effective amplitude of the plasmon–plasmon interaction, which is determined using the classical Hamilton theory, with the corresponding matrix element calculated in the framework of high-temperature quantum chromodynamics; this has enabled us to determine applicability limits for the purely classical approach described in this study.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063776120010082</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7761
ispartof Journal of experimental and theoretical physics, 2020-02, Vol.130 (2), p.274-286
issn 1063-7761
1090-6509
language eng
recordid cdi_proquest_journals_2385341240
source Springer Nature - Complete Springer Journals
subjects Classical and Quantum Gravitation
Elastic scattering
Elementary Particles
Excitation
Formalism
Gluons
High temperature
Kinetic equations
Landau damping
Nonlinear
Particle and Nuclear Physics
Physics
Physics and Astronomy
Plasmons
Quantum chromodynamics
Quantum Field Theory
Relativity Theory
Soft Matter Physics
Solid State Physics
Statistical
title Hamiltonian Formalism for Bose Excitations in a Plasma with a Non-Abelian Interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hamiltonian%20Formalism%20for%20Bose%20Excitations%20in%20a%20Plasma%20with%20a%20Non-Abelian%20Interaction&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Markov,%20Yu.%20A.&rft.date=2020-02-01&rft.volume=130&rft.issue=2&rft.spage=274&rft.epage=286&rft.pages=274-286&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776120010082&rft_dat=%3Cgale_proqu%3EA619241362%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2385341240&rft_id=info:pmid/&rft_galeid=A619241362&rfr_iscdi=true