Hamiltonian Formalism for Bose Excitations in a Plasma with a Non-Abelian Interaction
We have developed the Hamiltonian theory for collective longitudinally polarized colorless excitations (plasmons) in a high-temperature gluon plasma using the general formalism for constructing the wave theory in nonlinear media with dispersion, which was developed by V.E. Zakharov. In this approach...
Gespeichert in:
Veröffentlicht in: | Journal of experimental and theoretical physics 2020-02, Vol.130 (2), p.274-286 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have developed the Hamiltonian theory for collective longitudinally polarized colorless excitations (plasmons) in a high-temperature gluon plasma using the general formalism for constructing the wave theory in nonlinear media with dispersion, which was developed by V.E. Zakharov. In this approach, we have explicitly obtained a special canonical transformation that makes it possible to simplify the Hamiltonian of interaction of soft gluon excitations and, hence, to derive a new effective Hamiltonian. The approach developed here is used for constructing a Boltzmann-type kinetic equation describing elastic scattering of collective longitudinally polarized excitations in a gluon plasma as well as the effect of the so-called nonlinear Landau damping. We have performed detailed comparison of the effective amplitude of the plasmon–plasmon interaction, which is determined using the classical Hamilton theory, with the corresponding matrix element calculated in the framework of high-temperature quantum chromodynamics; this has enabled us to determine applicability limits for the purely classical approach described in this study. |
---|---|
ISSN: | 1063-7761 1090-6509 |
DOI: | 10.1134/S1063776120010082 |