A hypoplastic model for granular soils incorporating anisotropic critical state theory

Summary It is well known that soil is inherently anisotropic and its mechanical behavior is significantly influenced by its fabric anisotropy. Hypoplasticity is increasingly being accepted in the constitutive modeling for soils, in which many salient features, such as nonlinear stress‐strain relatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical and analytical methods in geomechanics 2020-04, Vol.44 (6), p.723-748
Hauptverfasser: Yang, Zhongxuan, Liao, Dong, Xu, Tingting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary It is well known that soil is inherently anisotropic and its mechanical behavior is significantly influenced by its fabric anisotropy. Hypoplasticity is increasingly being accepted in the constitutive modeling for soils, in which many salient features, such as nonlinear stress‐strain relations, dilatancy, and critical state failure, can be described by a single tensorial equation. However, within the framework of hypoplasticity, modeling fabric anisotropy remains challenging, as the fabric and its evolution are often vaguely assumed without a sound basis. This paper presents a hypoplastic constitutive model for granular soils based on the newly developed anisotropic critical state theory, in which the conditions of fabric anisotropy are concurrently satisfied along with the traditional conditions at the critical state. A deviatoric fabric tensor is introduced into the Gudehus‐Bauer hypoplastic model, and a scalar‐valued anisotropic state variable signifying the interplay between the fabric and the stress state is used to characterize its impact on the dilatancy and strength of the soils. In addition, fabric evolution during shearing can explicitly be addressed. Modifications have also been undertaken to improve the performance of the undrained response of the model. The anisotropic hypoplastic model can simulate experimental tests for sand under various combinations of principle stress direction, intermediate principal stress (or mode of shearing), soil densities, and confining pressures, and the associated drastic effect of different principal stress orientations in reference to the material axes of anisotropy can be well captured.
ISSN:0363-9061
1096-9853
DOI:10.1002/nag.3025